Aslı Eldem, Yamaç Tekintaş, Muhammed Ucuncu, Nesrin Horzum
{"title":"Electrospun Nanofiber Platforms for Photodynamic Therapy: Role and Efficacy in Cancer, Antimicrobial, and Wound Healing Applications","authors":"Aslı Eldem, Yamaç Tekintaş, Muhammed Ucuncu, Nesrin Horzum","doi":"10.1002/mame.202500014","DOIUrl":null,"url":null,"abstract":"<p>Electrospinning offers a versatile platform for developing nanofibrous scaffolds capable of enhancing the therapeutic potential of photodynamic therapy (PDT). Photosensitizer (PS) loaded fibers exhibit a high surface area-to-volume ratio, promoting efficient drug delivery, prolonged retention at the target site, and controlled release profiles. Inducing reactive oxygen species (ROS) generation through light activation offers a targeted therapeutic approach, selectively generating cytotoxic effects in cancerous or pathogenic cells while minimizing damage to healthy tissue. This selective cytotoxicity arises because the ROS are produced only in illuminated areas where PS releases and accumulates, limiting their harmful effects to desired regions. Additionally, PS-loaded fibers are highly effective in wound healing applications, promoting cell proliferation and tissue regeneration while providing a barrier against microbial infections. This review highlights recent advances in the design and biomedical application of PS-loaded nanofibers, emphasizing their influence on cell viability and effectiveness in microbial inhibition, thereby setting the stage for future innovations in cancer therapy, wound healing, and infection control.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202500014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202500014","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrospinning offers a versatile platform for developing nanofibrous scaffolds capable of enhancing the therapeutic potential of photodynamic therapy (PDT). Photosensitizer (PS) loaded fibers exhibit a high surface area-to-volume ratio, promoting efficient drug delivery, prolonged retention at the target site, and controlled release profiles. Inducing reactive oxygen species (ROS) generation through light activation offers a targeted therapeutic approach, selectively generating cytotoxic effects in cancerous or pathogenic cells while minimizing damage to healthy tissue. This selective cytotoxicity arises because the ROS are produced only in illuminated areas where PS releases and accumulates, limiting their harmful effects to desired regions. Additionally, PS-loaded fibers are highly effective in wound healing applications, promoting cell proliferation and tissue regeneration while providing a barrier against microbial infections. This review highlights recent advances in the design and biomedical application of PS-loaded nanofibers, emphasizing their influence on cell viability and effectiveness in microbial inhibition, thereby setting the stage for future innovations in cancer therapy, wound healing, and infection control.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)