{"title":"MXenes in the application of diabetic foot: mechanisms, therapeutic implications and future perspectives","authors":"Zhang Mengru, Wu Qinyi, Yao Zimo, Guo Bingqing, Xia Zhongyu, Jianda Xu","doi":"10.1007/s10856-025-06895-2","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetic foot represents a significant healthcare challenge, accounting for a substantial portion of diabetes-related hospitalizations and amputations globally. The complexity of diabetic foot management stems from the interplay of poor glycemic control, neuropathy, and peripheral vascular disease, which hinder wound healing processes. The high incidence, recurrence, and amputation rates associated with diabetic foot underscore the urgency for innovative treatment strategies. Recent advancements in nanotechnology, particularly the emergence of MXenes (two-dimensional transition metal carbides and/or nitrides), have shown promising potential in addressing these challenges by offering unique physicochemical and biological properties suitable for various biomedical applications. It is a novel potential strategy for diabetic foot wound healing in the future. This review comprehensively summarizes current knowledge, unique characteristics, and underlying mechanisms of MXenes in the context of diabetic foot management. Additionally, we propose the potential application of MXenes-based therapeutic strategies in diabetes foot. Furthermore, we also provide an overview of their current challenges and the future perspectives in related fields of diabetic wound healing.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-025-06895-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-025-06895-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic foot represents a significant healthcare challenge, accounting for a substantial portion of diabetes-related hospitalizations and amputations globally. The complexity of diabetic foot management stems from the interplay of poor glycemic control, neuropathy, and peripheral vascular disease, which hinder wound healing processes. The high incidence, recurrence, and amputation rates associated with diabetic foot underscore the urgency for innovative treatment strategies. Recent advancements in nanotechnology, particularly the emergence of MXenes (two-dimensional transition metal carbides and/or nitrides), have shown promising potential in addressing these challenges by offering unique physicochemical and biological properties suitable for various biomedical applications. It is a novel potential strategy for diabetic foot wound healing in the future. This review comprehensively summarizes current knowledge, unique characteristics, and underlying mechanisms of MXenes in the context of diabetic foot management. Additionally, we propose the potential application of MXenes-based therapeutic strategies in diabetes foot. Furthermore, we also provide an overview of their current challenges and the future perspectives in related fields of diabetic wound healing.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.