Solvent molecular design enables high graphite compatibility and good oxidation stability in low-concentration K-ion battery electrolytes

IF 2.6 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-03-13 DOI:10.1007/s11581-025-06208-1
Qiannan Li, Mengjia Zheng, Yingqiao Wang, Danni Liang, Jian Huang, Fan Liu, Chuan-Fu Sun, Wenzhuo Deng
{"title":"Solvent molecular design enables high graphite compatibility and good oxidation stability in low-concentration K-ion battery electrolytes","authors":"Qiannan Li,&nbsp;Mengjia Zheng,&nbsp;Yingqiao Wang,&nbsp;Danni Liang,&nbsp;Jian Huang,&nbsp;Fan Liu,&nbsp;Chuan-Fu Sun,&nbsp;Wenzhuo Deng","doi":"10.1007/s11581-025-06208-1","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional low-concentration ether-based electrolytes have attracted considerable attention due to their low cost, high ionic conductivity, and low viscosity. However, they face critical challenges, including poor oxidative stability at the cathode side and severe [K⁺-solvent] co-intercalation into the graphite anode at the anode side for potassium-ion batteries (PIBs). To address these issues, we present a novel approach using a weakly coordinating solvent—1,2-dimethoxypropane (DMP). Unlike the linear ether molecule 1,2-dimethoxyethane (DME), DMP features an additional methyl group that induces strong steric hindrance. This structural modification reduces the interaction between K⁺ ions and the solvent, forming an anion-rich solvation structure (ARSS) in the low-concentration electrolyte. The ARSS triggers the formation of an inorganic-rich solid electrolyte interphase (SEI) and enables high compatibility with the graphite anode. This results in a high initial Coulombic efficiency (CE) of 80.9% and remarkable capacity retention of 92.4% after 10 months of deep cycling. Furthermore, the ARSS substantially enhances the electrolyte oxidative stability, allowing the K₂Mn[Fe(CN)₆]₂ (KMHCF) cathode to deliver reliable cycling performance over 500 cycles at a high cut-off voltage of 4.3 V. These findings provide valuable insights into the design of low-concentration electrolytes, paving the way for the development of high-voltage and long-life PIBs.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 5","pages":"4299 - 4308"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06208-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional low-concentration ether-based electrolytes have attracted considerable attention due to their low cost, high ionic conductivity, and low viscosity. However, they face critical challenges, including poor oxidative stability at the cathode side and severe [K⁺-solvent] co-intercalation into the graphite anode at the anode side for potassium-ion batteries (PIBs). To address these issues, we present a novel approach using a weakly coordinating solvent—1,2-dimethoxypropane (DMP). Unlike the linear ether molecule 1,2-dimethoxyethane (DME), DMP features an additional methyl group that induces strong steric hindrance. This structural modification reduces the interaction between K⁺ ions and the solvent, forming an anion-rich solvation structure (ARSS) in the low-concentration electrolyte. The ARSS triggers the formation of an inorganic-rich solid electrolyte interphase (SEI) and enables high compatibility with the graphite anode. This results in a high initial Coulombic efficiency (CE) of 80.9% and remarkable capacity retention of 92.4% after 10 months of deep cycling. Furthermore, the ARSS substantially enhances the electrolyte oxidative stability, allowing the K₂Mn[Fe(CN)₆]₂ (KMHCF) cathode to deliver reliable cycling performance over 500 cycles at a high cut-off voltage of 4.3 V. These findings provide valuable insights into the design of low-concentration electrolytes, paving the way for the development of high-voltage and long-life PIBs.

溶剂分子设计使低浓度k离子电池电解质具有高石墨相容性和良好的氧化稳定性
传统的低浓度醚基电解质因其低成本、高离子电导率和低粘度而受到广泛关注。然而,他们面临着严峻的挑战,包括阴极侧氧化稳定性差和钾离子电池(PIBs)阳极侧石墨阳极严重的[K + -溶剂]共插。为了解决这些问题,我们提出了一种使用弱配位溶剂1,2-二甲氧基丙烷(DMP)的新方法。与线性醚分子1,2-二甲氧基乙烷(DME)不同,DMP具有一个额外的甲基,可诱导强烈的空间位阻。这种结构修饰减少了K +离子与溶剂的相互作用,在低浓度电解质中形成了富阴离子的溶剂化结构(ARSS)。ARSS触发了无机富固体电解质界面(SEI)的形成,并使其与石墨阳极具有高兼容性。深循环10个月后,初始库仑效率(CE)高达80.9%,容量保持率高达92.4%。此外,ARSS大大提高了电解液的氧化稳定性,使K₂Mn[Fe(CN)₆]2 (KMHCF)阴极在4.3 V的高截止电压下提供超过500次的可靠循环性能。这些发现为低浓度电解质的设计提供了有价值的见解,为开发高压和长寿命的pib铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信