Nanosilica-incorporated polyethersulfone-polytetrafluoroethylene dual-layer hollow fibers for direct contact membrane distillation

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohammed Faleh Abd Al-Ogaili, Mohammad Rava, Adnan A. A. AbdulRazak, Mohd Hafiz Dzarfan Othman, Mohd Hafiz Puteh, Juhana Jaafar, Mukhlis A. Rahman, Toni Kurniawan, Ojo Samuel, Mohammed Ahmed Shehab, Aniqa Imtiaz, Asmat Ullah Khan, M. H. D. Maher Alrefaai, Adnan Hameed Rasheed
{"title":"Nanosilica-incorporated polyethersulfone-polytetrafluoroethylene dual-layer hollow fibers for direct contact membrane distillation","authors":"Mohammed Faleh Abd Al-Ogaili,&nbsp;Mohammad Rava,&nbsp;Adnan A. A. AbdulRazak,&nbsp;Mohd Hafiz Dzarfan Othman,&nbsp;Mohd Hafiz Puteh,&nbsp;Juhana Jaafar,&nbsp;Mukhlis A. Rahman,&nbsp;Toni Kurniawan,&nbsp;Ojo Samuel,&nbsp;Mohammed Ahmed Shehab,&nbsp;Aniqa Imtiaz,&nbsp;Asmat Ullah Khan,&nbsp;M. H. D. Maher Alrefaai,&nbsp;Adnan Hameed Rasheed","doi":"10.1007/s10853-025-10876-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study advances membrane distillation by innovating a dual-layer hydrophilic-hydrophobic hollow fiber membrane, significantly enhancing vapor transfer and reducing conductive heat loss in direct contact membrane distillation (DCMD). Building on prior research that optimized polytetrafluoroethylene (PTFE) particle size (0.5 µm) and concentration (6 wt%) in polyethersulfone (PES)-PTFE membranes, this research incorporates silica nanoparticles to achieve super-hydrophobization of the outer layer. Concentrations of 0.2, 0.4, and 0.6 wt% silica nanoparticles were assessed for their impact on the membrane's structure and function, using scanning electron microscopy, liquid entry pressure, water contact angle, and mercury intrusion porosimetry. The most effective configuration was found with 6 wt% PTFE and 0.6 wt% silica nanoparticles, achieving a water flux of 18 kg m<sup>2</sup>/h and a salt rejection rate of 99.99% at 90 °C in DCMD. This integration of silica nanoparticles significantly enhances membrane hydrophobicity and separation efficiency, marking a novel advancement in membrane technology with practical implications. The performance improvement over varying salt concentrations and extended durations suggests the potential of these silica-enhanced membranes in addressing global desalination challenges, opening avenues for further research in nanoparticle-enhanced water purification methods.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 18","pages":"7552 - 7576"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10876-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study advances membrane distillation by innovating a dual-layer hydrophilic-hydrophobic hollow fiber membrane, significantly enhancing vapor transfer and reducing conductive heat loss in direct contact membrane distillation (DCMD). Building on prior research that optimized polytetrafluoroethylene (PTFE) particle size (0.5 µm) and concentration (6 wt%) in polyethersulfone (PES)-PTFE membranes, this research incorporates silica nanoparticles to achieve super-hydrophobization of the outer layer. Concentrations of 0.2, 0.4, and 0.6 wt% silica nanoparticles were assessed for their impact on the membrane's structure and function, using scanning electron microscopy, liquid entry pressure, water contact angle, and mercury intrusion porosimetry. The most effective configuration was found with 6 wt% PTFE and 0.6 wt% silica nanoparticles, achieving a water flux of 18 kg m2/h and a salt rejection rate of 99.99% at 90 °C in DCMD. This integration of silica nanoparticles significantly enhances membrane hydrophobicity and separation efficiency, marking a novel advancement in membrane technology with practical implications. The performance improvement over varying salt concentrations and extended durations suggests the potential of these silica-enhanced membranes in addressing global desalination challenges, opening avenues for further research in nanoparticle-enhanced water purification methods.

Graphical abstract

用于直接接触膜蒸馏的纳米硅-聚醚砜-聚四氟乙烯双层中空纤维
本研究通过对双层亲疏水中空纤维膜的创新,进一步推进了膜蒸馏技术的发展,显著提高了直接接触膜蒸馏(DCMD)的蒸汽传递,降低了传导热损失。在先前优化聚醚砜(PES)-PTFE膜中聚四氟乙烯(PTFE)粒径(0.5µm)和浓度(6 wt%)的研究基础上,本研究结合二氧化硅纳米颗粒实现了外层的超疏水。通过扫描电子显微镜、液体进入压力、水接触角和汞侵入孔隙度测定,评估了浓度为0.2、0.4和0.6 wt%的二氧化硅纳米颗粒对膜结构和功能的影响。最有效的配置是6 wt%的PTFE和0.6 wt%的二氧化硅纳米颗粒,在90°C的dmd中实现18 kg m2/h的水通量和99.99%的盐去除率。二氧化硅纳米颗粒的集成显著提高了膜的疏水性和分离效率,标志着膜技术的新进展,具有实际意义。不同盐浓度和延长时间的性能改善表明,这些硅增强膜在解决全球海水淡化挑战方面具有潜力,为进一步研究纳米颗粒增强的水净化方法开辟了道路。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信