{"title":"Biodegradation assessment tests of biopolymers in standardised water: different sources of variability","authors":"David Gutiérrez-Rial, Iria Villar, Pilar Feijóo, Benedicto Soto, Josefina Garrido, Salustiano Mato","doi":"10.1007/s10532-025-10143-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study assessed the ultimate biodegradation degree of two resins, polyhydroxybutyrate and polylactic acid (PHB and PLA), and three commercial biobased bags (BMAT, BGREEN, and BBEIGE) through the measurement of oxygen consumption in closed respirometers. Activated sludge from a wastewater treatment plant (WWTP) was used as the inoculum, cellulose was used as the reference material, and five trials were conducted with two different devices under identical conditions, with a 28-day incubation period. The results revealed statistically significant differences in the biochemical oxygen demand (BOD) measurements for cellulose, PHB, and PLA between the two devices and within the same devices across different trials. The degree of biodegradation (D<sub>t</sub>), calculated as the percentage of theoretical oxygen demand (ThOD), varied depending on the device and trial. For cellulose, D<sub>t</sub> ranged from 61 to 93%; for PLA, the maximum Dt was 6%; and for PHB, D<sub>t</sub> oscillated between 16 and 72%. These findings highlight the critical importance of carefully selecting the testing equipment, as it significantly influences biodegradation results, in addition to the already known interlaboratory variability caused by the inoculum.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-025-10143-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10143-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study assessed the ultimate biodegradation degree of two resins, polyhydroxybutyrate and polylactic acid (PHB and PLA), and three commercial biobased bags (BMAT, BGREEN, and BBEIGE) through the measurement of oxygen consumption in closed respirometers. Activated sludge from a wastewater treatment plant (WWTP) was used as the inoculum, cellulose was used as the reference material, and five trials were conducted with two different devices under identical conditions, with a 28-day incubation period. The results revealed statistically significant differences in the biochemical oxygen demand (BOD) measurements for cellulose, PHB, and PLA between the two devices and within the same devices across different trials. The degree of biodegradation (Dt), calculated as the percentage of theoretical oxygen demand (ThOD), varied depending on the device and trial. For cellulose, Dt ranged from 61 to 93%; for PLA, the maximum Dt was 6%; and for PHB, Dt oscillated between 16 and 72%. These findings highlight the critical importance of carefully selecting the testing equipment, as it significantly influences biodegradation results, in addition to the already known interlaboratory variability caused by the inoculum.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.