High-sensitivity MXene-copper-graphene metasurface for precision salinity sensing with machine learning optimization

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jacob Wekalao, Mika Sillanpää, Saleh Al-Farraj, J. Aravind Kumar
{"title":"High-sensitivity MXene-copper-graphene metasurface for precision salinity sensing with machine learning optimization","authors":"Jacob Wekalao,&nbsp;Mika Sillanpää,&nbsp;Saleh Al-Farraj,&nbsp;J. Aravind Kumar","doi":"10.1007/s11082-025-08249-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a metasurface-based salinity sensor integrating MXene, copper, and graphene. The sensor design features a central square resonator surrounded by circular resonators and a square ring resonator, all mounted on a graphene-coated base with SiO₂ substrate. Performance analysis demonstrates sensitivity values ranging from 270 GHzRIU<sup>−1</sup> to 286 GHzRIU<sup>−1</sup> across refractive indices of 1.3325–1.3505, with figures of merit between 5.516 and 5.831 RIU⁻<sup>1</sup>. The sensor exhibits excellent linearity in frequency response to both refractive index (R<sup>2</sup> = 99.997%) and concentration (R<sup>2</sup> = 100%). Random Forest Regression modelling validates the sensor's performance, achieving R<sup>2</sup> values up to 95% for varying graphene chemical potentials. The design shows robust performance across different incident angles and resonator dimensions, maintaining consistent detection accuracy of 20.408 and measurement uncertainty of 0.001.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 6","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08249-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a metasurface-based salinity sensor integrating MXene, copper, and graphene. The sensor design features a central square resonator surrounded by circular resonators and a square ring resonator, all mounted on a graphene-coated base with SiO₂ substrate. Performance analysis demonstrates sensitivity values ranging from 270 GHzRIU−1 to 286 GHzRIU−1 across refractive indices of 1.3325–1.3505, with figures of merit between 5.516 and 5.831 RIU⁻1. The sensor exhibits excellent linearity in frequency response to both refractive index (R2 = 99.997%) and concentration (R2 = 100%). Random Forest Regression modelling validates the sensor's performance, achieving R2 values up to 95% for varying graphene chemical potentials. The design shows robust performance across different incident angles and resonator dimensions, maintaining consistent detection accuracy of 20.408 and measurement uncertainty of 0.001.

高灵敏度mxene -铜-石墨烯超表面精密盐度传感与机器学习优化
本研究提出了一种集成MXene、铜和石墨烯的基于超表面的盐度传感器。该传感器设计的特点是中央方形谐振器被圆形谐振器和方形环形谐振器包围,所有谐振器都安装在带有SiO₂衬底的石墨烯涂层基座上。性能分析表明,在1.3325-1.3505的折射率范围内,灵敏度值从270 GHzRIU−1到286 GHzRIU−1,优点值在5.516和5.831 RIU−1之间。该传感器对折射率(R2 = 99.997%)和浓度(R2 = 100%)的频率响应均呈良好的线性关系。随机森林回归模型验证了传感器的性能,对于不同的石墨烯化学势,R2值高达95%。该设计在不同入射角和谐振腔尺寸下均表现出稳健的性能,保持了20.408的检测精度和0.001的测量不确定度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信