{"title":"Removal of Favipiravir from Wastewater with Membrane Bioreactor: Operational Parameters, Kinetics and Risk Assessment","authors":"Bahriye Eryildiz-Yesir, Ismail Koyuncu","doi":"10.1007/s11270-025-07948-6","DOIUrl":null,"url":null,"abstract":"<div><p>Antiviral drugs, especially those used to treat COVID-19, have recently been classified as emerging pollutants due to their persistent presence in water and wastewater. These compounds have been found in environmental matrices around the world, demonstrating that existing treatment methods are ineffective in fully removing them from water and wastewater. Therefore, this study examines the removal of favipiravir (FAV) in synthetic domestic wastewater using a membrane bioreactor (MBR). The MBR was operated at varying initial FAV concentrations (50, 100, and 150 µg/L) and solid retention times (SRTs) (45, 30, and 15 days). FAV concentration was measured in aqueous phase (influent and effluent) and sludge samples. Based on the obtained results, the biological degradation constant and efficiency of pharmaceutical removal were determined. An environmental risk assessment was also conducted. Results showed that FAV degradation rate was slightly decreased with increasing initial FAV concentration. However, FAV was removed > 99% regardless of initial FAV concentration. As the initial FAV concentration increased from 50 µg/L to 150 µg/L, the FAV concentration in sludge samples decreased, ranging from 90.8 μg/g to 41.3 μg/g. FAV removal efficiency increased from 48.9% to 86.4% with increasing SRT. The study of environmental risk quotients (RQ) indicates high risk of FAV (RQ > 1).</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 7","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11270-025-07948-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07948-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Antiviral drugs, especially those used to treat COVID-19, have recently been classified as emerging pollutants due to their persistent presence in water and wastewater. These compounds have been found in environmental matrices around the world, demonstrating that existing treatment methods are ineffective in fully removing them from water and wastewater. Therefore, this study examines the removal of favipiravir (FAV) in synthetic domestic wastewater using a membrane bioreactor (MBR). The MBR was operated at varying initial FAV concentrations (50, 100, and 150 µg/L) and solid retention times (SRTs) (45, 30, and 15 days). FAV concentration was measured in aqueous phase (influent and effluent) and sludge samples. Based on the obtained results, the biological degradation constant and efficiency of pharmaceutical removal were determined. An environmental risk assessment was also conducted. Results showed that FAV degradation rate was slightly decreased with increasing initial FAV concentration. However, FAV was removed > 99% regardless of initial FAV concentration. As the initial FAV concentration increased from 50 µg/L to 150 µg/L, the FAV concentration in sludge samples decreased, ranging from 90.8 μg/g to 41.3 μg/g. FAV removal efficiency increased from 48.9% to 86.4% with increasing SRT. The study of environmental risk quotients (RQ) indicates high risk of FAV (RQ > 1).
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.