Liancheng Wang, Anlin Shao, Fuming Qu, Xingfan Zhang, Xiaobo Liu
{"title":"A discrete particle model considering particle shape and its simulation study of isolated draw","authors":"Liancheng Wang, Anlin Shao, Fuming Qu, Xingfan Zhang, Xiaobo Liu","doi":"10.1007/s10035-025-01533-8","DOIUrl":null,"url":null,"abstract":"<div><p>The flow characteristics of granular materials under gravity represent the primary scientific challenge involved in caving mining. Conducting in-depth research in this area contributes to improving ore recovery results. This study introduces an innovative discrete particle dynamics model that combines the advantages of soft-sphere and hard-sphere algorithms to significantly improve the simulation of granular flow in caving mining. The proposed soft-hard sphere coupling model achieves remarkable computational efficiency while accurately capturing the influence of particle shape on flow behavior. By developing a specialized collision resolution algorithm and implementing advanced contact detection methods, the model successfully simulates the isolated draw process for particles of various shapes, including circular, polygonal and elliptical particles. The reliability of the model is thoroughly validated through comparison with physical experiments and theoretical models. Furthermore, the study demonstrates how the rolling resistance coefficient can effectively characterize particle shape effects in circular particle simulations, providing a practical approach to balance computational efficiency and accuracy. These developments offer valuable insights for optimizing ore recovery in caving mining operations. </p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01533-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The flow characteristics of granular materials under gravity represent the primary scientific challenge involved in caving mining. Conducting in-depth research in this area contributes to improving ore recovery results. This study introduces an innovative discrete particle dynamics model that combines the advantages of soft-sphere and hard-sphere algorithms to significantly improve the simulation of granular flow in caving mining. The proposed soft-hard sphere coupling model achieves remarkable computational efficiency while accurately capturing the influence of particle shape on flow behavior. By developing a specialized collision resolution algorithm and implementing advanced contact detection methods, the model successfully simulates the isolated draw process for particles of various shapes, including circular, polygonal and elliptical particles. The reliability of the model is thoroughly validated through comparison with physical experiments and theoretical models. Furthermore, the study demonstrates how the rolling resistance coefficient can effectively characterize particle shape effects in circular particle simulations, providing a practical approach to balance computational efficiency and accuracy. These developments offer valuable insights for optimizing ore recovery in caving mining operations.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.