Glass Fiber Reinforced Composite Produced with a Novel Matrix of Bio-based Unsaturated Polyester Resin made from 2,5-Furan Dicarboxylic Acid and Isosorbide

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Samira Akbari, Jeevan Tom Joseph, Mikael Skrifvars, Sunil Kumar Ramamoorthy, Dan Åkesson
{"title":"Glass Fiber Reinforced Composite Produced with a Novel Matrix of Bio-based Unsaturated Polyester Resin made from 2,5-Furan Dicarboxylic Acid and Isosorbide","authors":"Samira Akbari,&nbsp;Jeevan Tom Joseph,&nbsp;Mikael Skrifvars,&nbsp;Sunil Kumar Ramamoorthy,&nbsp;Dan Åkesson","doi":"10.1007/s10924-025-03539-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a bio-based resin containing glycerol, isosorbide, and 2,5-furan dicarboxylic acid was used to produce a glass fiber reinforced composite. The thermomechanical properties of the resin were examined through dynamic mechanical analysis, thermogravimetric analysis, and differential scanning calorimetry, and were compared with those of commercially available unsaturated polyester resin and epoxy resin. Glass fiber composites were prepared using the synthesized bio-based resin, commercial unsaturated polyester resin, and commercial epoxy resin. Tensile tests, flexural tests, and aging tests were performed on all three types of composites and the results were compared. The findings suggest that the bio-based resin exhibits superior thermomechanical properties compared to the commercial resins. Bio-based resin demonstrates a high storage modulus of 4807 MPa and a loss modulus of 72 MPa at 25 ℃, along with a high glass transition temperature of 173 ℃. The flexural and tensile properties of the bio-based resin were better than that of the commercial resins. The composite produced from bio-based resin shows a flexural strength of 334 MPa and a tensile strength of 256 MPa. Aging results indicate that the synthesized bio-based resin was fairly stable at elevated temperatures. The outcome of this work shows that the bio-based glass fiber reinforced composite is a promising composite for high temperature applications.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 6","pages":"2798 - 2812"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10924-025-03539-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03539-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a bio-based resin containing glycerol, isosorbide, and 2,5-furan dicarboxylic acid was used to produce a glass fiber reinforced composite. The thermomechanical properties of the resin were examined through dynamic mechanical analysis, thermogravimetric analysis, and differential scanning calorimetry, and were compared with those of commercially available unsaturated polyester resin and epoxy resin. Glass fiber composites were prepared using the synthesized bio-based resin, commercial unsaturated polyester resin, and commercial epoxy resin. Tensile tests, flexural tests, and aging tests were performed on all three types of composites and the results were compared. The findings suggest that the bio-based resin exhibits superior thermomechanical properties compared to the commercial resins. Bio-based resin demonstrates a high storage modulus of 4807 MPa and a loss modulus of 72 MPa at 25 ℃, along with a high glass transition temperature of 173 ℃. The flexural and tensile properties of the bio-based resin were better than that of the commercial resins. The composite produced from bio-based resin shows a flexural strength of 334 MPa and a tensile strength of 256 MPa. Aging results indicate that the synthesized bio-based resin was fairly stable at elevated temperatures. The outcome of this work shows that the bio-based glass fiber reinforced composite is a promising composite for high temperature applications.

以2,5-呋喃二甲酸和异山梨酯为原料制备的新型生物基不饱和聚酯树脂为基体的玻璃纤维增强复合材料
在本研究中,使用含有甘油、异山梨酯和2,5-呋喃二羧酸的生物基树脂来生产玻璃纤维增强复合材料。采用动态力学分析、热重分析和差示扫描量热法对树脂的热力学性能进行了表征,并与市售不饱和聚酯树脂和环氧树脂进行了比较。采用合成的生物基树脂、工业不饱和聚酯树脂和工业环氧树脂制备了玻璃纤维复合材料。对三种类型的复合材料进行了拉伸试验、弯曲试验和老化试验,并对结果进行了比较。研究结果表明,与商业树脂相比,生物基树脂具有优越的热机械性能。生物基树脂在25℃下的储存模量为4807 MPa,损耗模量为72 MPa,玻璃化转变温度为173℃。生物基树脂的抗弯性能和拉伸性能均优于工业树脂。该复合材料的抗折强度为334 MPa,抗拉强度为256 MPa。老化结果表明,合成的生物基树脂在高温下具有较好的稳定性。研究结果表明,生物基玻璃纤维增强复合材料是一种很有前途的高温复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信