First-principles study of the structural, electronic, mechanical, and thermodynamic properties of (P, Al, B)-doped Li2SiO3 system

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-04-03 DOI:10.1007/s11581-025-06258-5
Muhammad Moin, Mehrunisa Moin, Hairong Zhao, Omar Hammad Alsalmi, Abdul Waheed Anwar, Udayabhaskararao Thumu
{"title":"First-principles study of the structural, electronic, mechanical, and thermodynamic properties of (P, Al, B)-doped Li2SiO3 system","authors":"Muhammad Moin,&nbsp;Mehrunisa Moin,&nbsp;Hairong Zhao,&nbsp;Omar Hammad Alsalmi,&nbsp;Abdul Waheed Anwar,&nbsp;Udayabhaskararao Thumu","doi":"10.1007/s11581-025-06258-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this investigation, Li<sub>2</sub>SiO<sub>3</sub>, a promising candidate as an electrolyte compound in Li⁺-ion-based batteries, exhibits a distinctive orthorhombic crystal structure. The generalized gradient approximation (GGA-PBE) with the ultrasoft pseudopotential approach in density functional theory (DFT) is employed to gain significant insights into enhancing the performance and efficiency of Li-ion batteries utilizing silicon cathodes. The calculated bandgap values are 5.61 eV (Li<sub>2</sub>SiO<sub>3</sub>), 2.62 eV (Li<sub>2</sub>Si<sub>1.5</sub>P<sub>0.5</sub>O<sub>3</sub>), and 1.7 eV (Li<sub>2</sub>Si<sub>1.25</sub>P<sub>0.75</sub>O<sub>3</sub>) for the first doped material, 2.66 eV (Li<sub>1.5</sub>Al<sub>0.5</sub>SiO<sub>3</sub>) and 2.16 eV (Li<sub>1.25</sub>Al<sub>0.75</sub>SiO<sub>3</sub>) for the second material, and 3.71 eV (Li<sub>1.5</sub>B<sub>0.5</sub>SiO<sub>3</sub>) and 3.16 eV (Li<sub>1.25</sub>B<sub>0.75</sub>SiO<sub>3</sub>) for the third material. For Li–O bonds, the overlap between the 2 s state of lithium (Li) and the 2 s (2p<sub>x</sub>, 2p<sub>y</sub>, and 2p<sub>z</sub>) states of oxygen (O) is analyzed. The obtained results indicate that these systems exhibit mechanical stability and doping induced stability. The material structures display anisotropic and ductile elastic responses. Additionally, due to their narrow bandgaps, these materials demonstrate excellent photon absorption capabilities, as evidenced by their distinctive optical responses. This analysis identifies four new thermodynamically stable systems within the Li-Si–O framework, encompassing both pristine and doped structures. This theoretical investigation aims to explore the essential properties of cathode and anode materials for next-generation Li-ion batteries.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 5","pages":"4157 - 4174"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06258-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this investigation, Li2SiO3, a promising candidate as an electrolyte compound in Li⁺-ion-based batteries, exhibits a distinctive orthorhombic crystal structure. The generalized gradient approximation (GGA-PBE) with the ultrasoft pseudopotential approach in density functional theory (DFT) is employed to gain significant insights into enhancing the performance and efficiency of Li-ion batteries utilizing silicon cathodes. The calculated bandgap values are 5.61 eV (Li2SiO3), 2.62 eV (Li2Si1.5P0.5O3), and 1.7 eV (Li2Si1.25P0.75O3) for the first doped material, 2.66 eV (Li1.5Al0.5SiO3) and 2.16 eV (Li1.25Al0.75SiO3) for the second material, and 3.71 eV (Li1.5B0.5SiO3) and 3.16 eV (Li1.25B0.75SiO3) for the third material. For Li–O bonds, the overlap between the 2 s state of lithium (Li) and the 2 s (2px, 2py, and 2pz) states of oxygen (O) is analyzed. The obtained results indicate that these systems exhibit mechanical stability and doping induced stability. The material structures display anisotropic and ductile elastic responses. Additionally, due to their narrow bandgaps, these materials demonstrate excellent photon absorption capabilities, as evidenced by their distinctive optical responses. This analysis identifies four new thermodynamically stable systems within the Li-Si–O framework, encompassing both pristine and doped structures. This theoretical investigation aims to explore the essential properties of cathode and anode materials for next-generation Li-ion batteries.

(P, Al, B)掺杂Li2SiO3体系结构、电子、机械和热力学性质的第一性原理研究
在这项研究中,Li2SiO3是一种很有前途的锂+离子基电池电解质化合物,它表现出独特的正交晶体结构。采用密度泛函理论(DFT)中的广义梯度近似(GGA-PBE)和超软赝势方法,对提高硅阴极锂离子电池的性能和效率有重要的见解。计算得到的带隙值分别为:第一种掺杂材料为5.61 eV (Li2SiO3)、2.62 eV (Li2Si1.5P0.5O3)和1.7 eV (Li2Si1.25P0.75O3),第二种掺杂材料为2.66 eV (Li1.5Al0.5SiO3)和2.16 eV (Li1.25Al0.75SiO3),第三种掺杂材料为3.71 eV (Li1.5B0.5SiO3)和3.16 eV (Li1.25B0.75SiO3)。对于Li - O键,分析了锂(Li)的2s态与氧(O)的2s (2px, 2py和2pz)态之间的重叠。结果表明,该体系具有机械稳定性和掺杂诱导稳定性。材料结构表现出各向异性和延性弹性响应。此外,由于其窄带隙,这些材料表现出优异的光子吸收能力,正如其独特的光学响应所证明的那样。该分析确定了Li-Si-O框架内的四种新的热力学稳定系统,包括原始结构和掺杂结构。本理论研究旨在探索下一代锂离子电池正极材料和负极材料的基本特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信