{"title":"Mechanism analysis of the DRO low-energy transfer problem: An energy perspective","authors":"Ming Wang, Chen Zhang, Hao Zhang","doi":"10.1007/s42064-024-0215-7","DOIUrl":null,"url":null,"abstract":"<div><p>The 2:1 resonant distant retrograde orbit (DRO), known for its long-term stability and global accessibility, holds strategic significance in current Earth-Moon space mission explorations. This paper conducts a comprehensive analysis of the problem of low-energy transferring into 2:1 DRO using the weak stability boundary (WSB) and lunar gravity assist (LGA) in the planar bi-circular restricted four-body problem (BCR4BP). The transfer process is categorized into three phases: the Earth-Moon transfer, Sun-Earth weak stability boundary transfer, and DRO low-energy capture. Addressing key questions, our study investigates: (1) Under what LGA conditions can the spacecraft reach the approximate area where the WSB region is situated? (2) How do trajectories, upon reaching the region where the WSB is located, return to the vicinity of 2:1 DRO, potentially facilitating low-energy DRO insertion? Our study involved a comprehensive analysis of the spacecraft’s changes in Earth-Moon mechanical energy and Jacobi energy during the entire transfer process. This analysis yielded the energy and geometric conditions necessary for potential low-energy DRO insertion, effectively filtering out numerous impractical candidate trajectories and enhancing computational effciency. In this paper, the geometric condition is referred to as the low-energy transfer gateway (LETG). Using the LEGT as the stitching interface, a significant number of feasible solutions were obtained effectively for bi-impulse DRO transfer trajectories through differential correction, some of which were previously undiscovered.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"9 2","pages":"165 - 193"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0215-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The 2:1 resonant distant retrograde orbit (DRO), known for its long-term stability and global accessibility, holds strategic significance in current Earth-Moon space mission explorations. This paper conducts a comprehensive analysis of the problem of low-energy transferring into 2:1 DRO using the weak stability boundary (WSB) and lunar gravity assist (LGA) in the planar bi-circular restricted four-body problem (BCR4BP). The transfer process is categorized into three phases: the Earth-Moon transfer, Sun-Earth weak stability boundary transfer, and DRO low-energy capture. Addressing key questions, our study investigates: (1) Under what LGA conditions can the spacecraft reach the approximate area where the WSB region is situated? (2) How do trajectories, upon reaching the region where the WSB is located, return to the vicinity of 2:1 DRO, potentially facilitating low-energy DRO insertion? Our study involved a comprehensive analysis of the spacecraft’s changes in Earth-Moon mechanical energy and Jacobi energy during the entire transfer process. This analysis yielded the energy and geometric conditions necessary for potential low-energy DRO insertion, effectively filtering out numerous impractical candidate trajectories and enhancing computational effciency. In this paper, the geometric condition is referred to as the low-energy transfer gateway (LETG). Using the LEGT as the stitching interface, a significant number of feasible solutions were obtained effectively for bi-impulse DRO transfer trajectories through differential correction, some of which were previously undiscovered.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.