A Passive RFID Temperature Sensor With 0.16 °C Resolution, +0.42 °C/ -0.83 °C Inaccuracy and 0.234 nJ/Conversion

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yu Xiao;Songting Li;Dun Yan;Feng Wang
{"title":"A Passive RFID Temperature Sensor With 0.16 °C Resolution, +0.42 °C/ -0.83 °C Inaccuracy and 0.234 nJ/Conversion","authors":"Yu Xiao;Songting Li;Dun Yan;Feng Wang","doi":"10.1109/JSEN.2025.3556563","DOIUrl":null,"url":null,"abstract":"This article presents an ultralow-power radio frequency identification (RFID) with an embedded CMOS temperature sensor (TS). The thermometry working flow of the Query01-Query00-Ack sequence is introduced, which is compatible with the electronic product code (EPC) GEN-2 standard. A 2k-bit multitime programmable (MTP) nonvolatile memory (NVM) array with a standard CMOS process is used to store tag information, tag identification (TID), EPC, initialization parameter, and TS data. The proposed rectifier can achieve a wide power dynamic range (PDR) of 21.5 dB with peak power conversion efficiency (PCE) of 65%@−15 dBm under a 100-k<inline-formula> <tex-math>$\\Omega $ </tex-math></inline-formula> load. A protection mechanism for reliable reading and writing is presented to ensure proper tag initialization and avoid the ghost tag phenomenon. Time-domain digital quantization is adopted to convert the signal that period varies with temperature into a digital signal for low power consumption. The TS achieves a resolution of <inline-formula> <tex-math>$0.16~^{\\circ }$ </tex-math></inline-formula>C and inaccuracy of <inline-formula> <tex-math>$+ 0.42~^{\\circ }$ </tex-math></inline-formula>C/<inline-formula> <tex-math>$- 0.83~^{\\circ }$ </tex-math></inline-formula>C after one-point calibration at <inline-formula> <tex-math>$0~^{\\circ }$ </tex-math></inline-formula>C in the temperature range from <inline-formula> <tex-math>$- 20~^{\\circ }$ </tex-math></inline-formula>C to <inline-formula> <tex-math>$30~^{\\circ }$ </tex-math></inline-formula>C. When the TS is powered at 1 V, it can achieve 0.234 nJ of energy per conversion in a conversion time of 1.8 ms. The passive RFID TS occupies an area of 0.5579 mm2 in the 0.13- <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m CMOS process. At the frequency of ~910 MHz, measured tag sensitivity can reach −22 dBm, and the 3-dB bandwidth is 51.5 MHz.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 10","pages":"18136-18144"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10955115/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents an ultralow-power radio frequency identification (RFID) with an embedded CMOS temperature sensor (TS). The thermometry working flow of the Query01-Query00-Ack sequence is introduced, which is compatible with the electronic product code (EPC) GEN-2 standard. A 2k-bit multitime programmable (MTP) nonvolatile memory (NVM) array with a standard CMOS process is used to store tag information, tag identification (TID), EPC, initialization parameter, and TS data. The proposed rectifier can achieve a wide power dynamic range (PDR) of 21.5 dB with peak power conversion efficiency (PCE) of 65%@−15 dBm under a 100-k $\Omega $ load. A protection mechanism for reliable reading and writing is presented to ensure proper tag initialization and avoid the ghost tag phenomenon. Time-domain digital quantization is adopted to convert the signal that period varies with temperature into a digital signal for low power consumption. The TS achieves a resolution of $0.16~^{\circ }$ C and inaccuracy of $+ 0.42~^{\circ }$ C/ $- 0.83~^{\circ }$ C after one-point calibration at $0~^{\circ }$ C in the temperature range from $- 20~^{\circ }$ C to $30~^{\circ }$ C. When the TS is powered at 1 V, it can achieve 0.234 nJ of energy per conversion in a conversion time of 1.8 ms. The passive RFID TS occupies an area of 0.5579 mm2 in the 0.13- $\mu $ m CMOS process. At the frequency of ~910 MHz, measured tag sensitivity can reach −22 dBm, and the 3-dB bandwidth is 51.5 MHz.
无源RFID温度传感器具有0.16°C分辨率,+0.42°C/ -0.83°C误差和0.234 nJ/转换
本文介绍了一种嵌入式CMOS温度传感器的超低功耗射频识别(RFID)。介绍了Query01-Query00-Ack序列的测温工作流程,该序列与电子产品编码(EPC) GEN-2标准兼容。采用标准CMOS工艺的2k位MTP非易失性存储器(NVM)阵列,用于存储标签信息、标签识别(TID)、EPC、初始化参数和TS数据。该整流器可实现21.5 dB的宽功率动态范围(PDR),峰值功率转换效率(PCE)为65%@−15 dBm under a 100-k $\Omega $ load. A protection mechanism for reliable reading and writing is presented to ensure proper tag initialization and avoid the ghost tag phenomenon. Time-domain digital quantization is adopted to convert the signal that period varies with temperature into a digital signal for low power consumption. The TS achieves a resolution of $0.16~^{\circ }$ C and inaccuracy of $+ 0.42~^{\circ }$ C/ $- 0.83~^{\circ }$ C after one-point calibration at $0~^{\circ }$ C in the temperature range from $- 20~^{\circ }$ C to $30~^{\circ }$ C. When the TS is powered at 1 V, it can achieve 0.234 nJ of energy per conversion in a conversion time of 1.8 ms. The passive RFID TS occupies an area of 0.5579 mm2 in the 0.13- $\mu $ m CMOS process. At the frequency of ~910 MHz, measured tag sensitivity can reach −22 dBm, and the 3-dB bandwidth is 51.5 MHz.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信