Counterfactual Inference for Generalized Zero-Shot Compound-Fault Diagnosis

IF 5.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Juan Xu;Hui Kong;Xu Ding;Xiaohui Yuan
{"title":"Counterfactual Inference for Generalized Zero-Shot Compound-Fault Diagnosis","authors":"Juan Xu;Hui Kong;Xu Ding;Xiaohui Yuan","doi":"10.1109/TIM.2025.3565070","DOIUrl":null,"url":null,"abstract":"Learning a model heavily depends on the training examples, which are sometimes difficult to obtain if not impossible. This a typically true for fault diagnosis in machinery, particularly for compound faults. The counterfactual inference reveals the causal components inherent in the fault data in an interpretable manner, divulging critical causes from the observable phenomena. This article proposes a method to address the imbalance and interpretability issues of generalized zero-shot learning (GZSL) methods for compound-fault diagnosis using counterfactual inference. Our method uses a structural causal model (SCM) to decouple and generate fault features, which enhances the capabilities of the variational autoencoder and generative adversarial network (VAE-GAN) through a strengthened discriminator, and reveals the intrinsic causal components in fault data, distinguishing key fault causes from accompanying phenomena. This enables the classification of both single and compound faults by learning from examples of single faults, easing the dependence on the examples of compound faults. Extensive experimental results show that our method, trained solely with single-fault samples, achieves a harmonic average of 87.40% accuracy for both single and compound faults, outperforming existing state-of-the-art methods. This significantly improves both the accuracy and interpretability of compound-fault diagnosis.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-11"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10979452/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Learning a model heavily depends on the training examples, which are sometimes difficult to obtain if not impossible. This a typically true for fault diagnosis in machinery, particularly for compound faults. The counterfactual inference reveals the causal components inherent in the fault data in an interpretable manner, divulging critical causes from the observable phenomena. This article proposes a method to address the imbalance and interpretability issues of generalized zero-shot learning (GZSL) methods for compound-fault diagnosis using counterfactual inference. Our method uses a structural causal model (SCM) to decouple and generate fault features, which enhances the capabilities of the variational autoencoder and generative adversarial network (VAE-GAN) through a strengthened discriminator, and reveals the intrinsic causal components in fault data, distinguishing key fault causes from accompanying phenomena. This enables the classification of both single and compound faults by learning from examples of single faults, easing the dependence on the examples of compound faults. Extensive experimental results show that our method, trained solely with single-fault samples, achieves a harmonic average of 87.40% accuracy for both single and compound faults, outperforming existing state-of-the-art methods. This significantly improves both the accuracy and interpretability of compound-fault diagnosis.
广义零弹复合故障诊断的反事实推理
学习一个模型在很大程度上依赖于训练样本,这些样本有时很难获得,如果不是不可能的话。这在机械故障诊断,特别是复合故障诊断中是典型的。反事实推理以一种可解释的方式揭示故障数据中固有的因果成分,从可观察到的现象中揭示关键原因。本文提出了一种利用反事实推理解决复合故障诊断中广义零次学习(GZSL)方法的不平衡和可解释性问题的方法。该方法采用结构因果模型(SCM)对故障特征进行解耦和生成,通过增强的判别器增强变分自编码器和生成对抗网络(vee - gan)的能力,揭示故障数据中的内在因果成分,从伴随现象中区分出关键故障原因。这使得通过学习单个断层的例子可以对单个和复合断层进行分类,减轻了对复合断层的依赖。大量的实验结果表明,我们的方法在单故障样本的训练下,对单故障和复合故障的谐波平均准确率达到87.40%,优于现有的最先进的方法。这大大提高了复合故障诊断的准确性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信