{"title":"Counterfactual Inference for Generalized Zero-Shot Compound-Fault Diagnosis","authors":"Juan Xu;Hui Kong;Xu Ding;Xiaohui Yuan","doi":"10.1109/TIM.2025.3565070","DOIUrl":null,"url":null,"abstract":"Learning a model heavily depends on the training examples, which are sometimes difficult to obtain if not impossible. This a typically true for fault diagnosis in machinery, particularly for compound faults. The counterfactual inference reveals the causal components inherent in the fault data in an interpretable manner, divulging critical causes from the observable phenomena. This article proposes a method to address the imbalance and interpretability issues of generalized zero-shot learning (GZSL) methods for compound-fault diagnosis using counterfactual inference. Our method uses a structural causal model (SCM) to decouple and generate fault features, which enhances the capabilities of the variational autoencoder and generative adversarial network (VAE-GAN) through a strengthened discriminator, and reveals the intrinsic causal components in fault data, distinguishing key fault causes from accompanying phenomena. This enables the classification of both single and compound faults by learning from examples of single faults, easing the dependence on the examples of compound faults. Extensive experimental results show that our method, trained solely with single-fault samples, achieves a harmonic average of 87.40% accuracy for both single and compound faults, outperforming existing state-of-the-art methods. This significantly improves both the accuracy and interpretability of compound-fault diagnosis.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-11"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10979452/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Learning a model heavily depends on the training examples, which are sometimes difficult to obtain if not impossible. This a typically true for fault diagnosis in machinery, particularly for compound faults. The counterfactual inference reveals the causal components inherent in the fault data in an interpretable manner, divulging critical causes from the observable phenomena. This article proposes a method to address the imbalance and interpretability issues of generalized zero-shot learning (GZSL) methods for compound-fault diagnosis using counterfactual inference. Our method uses a structural causal model (SCM) to decouple and generate fault features, which enhances the capabilities of the variational autoencoder and generative adversarial network (VAE-GAN) through a strengthened discriminator, and reveals the intrinsic causal components in fault data, distinguishing key fault causes from accompanying phenomena. This enables the classification of both single and compound faults by learning from examples of single faults, easing the dependence on the examples of compound faults. Extensive experimental results show that our method, trained solely with single-fault samples, achieves a harmonic average of 87.40% accuracy for both single and compound faults, outperforming existing state-of-the-art methods. This significantly improves both the accuracy and interpretability of compound-fault diagnosis.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.