Manuel Castillo-Cara;Jesus Martínez-Gómez;Javier Ballesteros-Jerez;Ismael García-Varea;Raúl García-Castro;Luis Orozco-Barbosa
{"title":"MIMO-Based Indoor Localisation With Hybrid Neural Networks: Leveraging Synthetic Images From Tidy Data for Enhanced Deep Learning","authors":"Manuel Castillo-Cara;Jesus Martínez-Gómez;Javier Ballesteros-Jerez;Ismael García-Varea;Raúl García-Castro;Luis Orozco-Barbosa","doi":"10.1109/JSTSP.2025.3555067","DOIUrl":null,"url":null,"abstract":"Indoor localization determines an object's position within enclosed spaces, with applications in navigation, asset tracking, robotics, and context-aware computing. Technologies range from WiFi and Bluetooth to advanced systems like Massive Multiple Input-Multiple Output (MIMO). MIMO, initially designed to enhance wireless communication, is now key in indoor positioning due to its spatial diversity and multipath propagation. This study integrates MIMO-based indoor localization with Hybrid Neural Networks (HyNN), converting structured datasets into synthetic images using TINTO. This research marks the first application of HyNNs using synthetic images for MIMO-based indoor localization. Our key contributions include: (i) adapting TINTO for regression problems; (ii) using synthetic images as input data for our model; (iii) designing a novel HyNN with a Convolutional Neural Network branch for synthetic images and an MultiLayer Percetron branch for tidy data; and (iv) demonstrating improved results and metrics compared to prior literature. These advancements highlight the potential of HyNNs in enhancing the accuracy and efficiency of indoor localization systems.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"19 3","pages":"559-571"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10946146","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10946146/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Indoor localization determines an object's position within enclosed spaces, with applications in navigation, asset tracking, robotics, and context-aware computing. Technologies range from WiFi and Bluetooth to advanced systems like Massive Multiple Input-Multiple Output (MIMO). MIMO, initially designed to enhance wireless communication, is now key in indoor positioning due to its spatial diversity and multipath propagation. This study integrates MIMO-based indoor localization with Hybrid Neural Networks (HyNN), converting structured datasets into synthetic images using TINTO. This research marks the first application of HyNNs using synthetic images for MIMO-based indoor localization. Our key contributions include: (i) adapting TINTO for regression problems; (ii) using synthetic images as input data for our model; (iii) designing a novel HyNN with a Convolutional Neural Network branch for synthetic images and an MultiLayer Percetron branch for tidy data; and (iv) demonstrating improved results and metrics compared to prior literature. These advancements highlight the potential of HyNNs in enhancing the accuracy and efficiency of indoor localization systems.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.