Protecting Images From Manipulations With Deep Optical Signatures

IF 8.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kevin Arias;Pablo Gomez;Carlos Hinojosa;Juan Carlos Niebles;Henry Arguello
{"title":"Protecting Images From Manipulations With Deep Optical Signatures","authors":"Kevin Arias;Pablo Gomez;Carlos Hinojosa;Juan Carlos Niebles;Henry Arguello","doi":"10.1109/JSTSP.2025.3554136","DOIUrl":null,"url":null,"abstract":"Due to the advancements in deep image generation models, ensuring digital image authenticity, integrity, and confidentiality becomes challenging. While many active image manipulation detection methods embed digital signatures post-image acquisition, the vulnerabilities persist if unauthorized access occurs before this embedding or the embedding software is compromised. This work introduces an optics-based active image manipulation detection approach that learns the structure of a color-coded aperture (CCA), which encodes the light within the camera and embeds a highly reliable and imperceptible optical signature before image acquisition. We optimize our camera model with our proposed image manipulation detection network via end-to-end training. We validate our approach with extensive simulations and a proof-of-concept optical system. The results show that our method outperforms the state-of-the-art active image manipulation detection techniques.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"19 3","pages":"549-558"},"PeriodicalIF":8.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10946156/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the advancements in deep image generation models, ensuring digital image authenticity, integrity, and confidentiality becomes challenging. While many active image manipulation detection methods embed digital signatures post-image acquisition, the vulnerabilities persist if unauthorized access occurs before this embedding or the embedding software is compromised. This work introduces an optics-based active image manipulation detection approach that learns the structure of a color-coded aperture (CCA), which encodes the light within the camera and embeds a highly reliable and imperceptible optical signature before image acquisition. We optimize our camera model with our proposed image manipulation detection network via end-to-end training. We validate our approach with extensive simulations and a proof-of-concept optical system. The results show that our method outperforms the state-of-the-art active image manipulation detection techniques.
保护图像免受操纵与深光学签名
由于深度图像生成模型的进步,确保数字图像的真实性、完整性和保密性变得具有挑战性。虽然许多主动图像处理检测方法在图像采集后嵌入数字签名,但如果在嵌入之前发生未经授权的访问或嵌入软件被破坏,则漏洞仍然存在。这项工作介绍了一种基于光学的主动图像处理检测方法,该方法学习了颜色编码孔径(CCA)的结构,该结构对相机内的光进行编码,并在图像采集之前嵌入高度可靠且难以察觉的光学签名。我们通过端到端训练,用我们提出的图像处理检测网络来优化我们的相机模型。我们通过广泛的模拟和概念验证光学系统来验证我们的方法。结果表明,我们的方法优于最先进的主动图像处理检测技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Selected Topics in Signal Processing
IEEE Journal of Selected Topics in Signal Processing 工程技术-工程:电子与电气
CiteScore
19.00
自引率
1.30%
发文量
135
审稿时长
3 months
期刊介绍: The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others. The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信