Leveraging Trend-Aware Attention in Transformers for Lithium-Ion Battery Capacity Prediction

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chuang Chen;Yuheng Wu;Jiantao Shi;Dongdong Yue;Hongtian Chen
{"title":"Leveraging Trend-Aware Attention in Transformers for Lithium-Ion Battery Capacity Prediction","authors":"Chuang Chen;Yuheng Wu;Jiantao Shi;Dongdong Yue;Hongtian Chen","doi":"10.1109/LSENS.2025.3562870","DOIUrl":null,"url":null,"abstract":"The prediction of lithium-ion battery capacity plays an essential role in ensuring the reliability and safety of modern electronic devices. To effectively capture the local trend information inherent in lithium-ion batteries and enhance the accuracy of capacity forecasts, this letter presents an innovative Transformer model that incorporates a specialized trend-aware attention mechanism. This novel model synergistically combines the strengths of trend-aware attention and the Transformer encoder. It introduces 1-D convolution within the trend-aware attention framework, thereby replacing the traditional linear projections of queries and keys found in conventional self-attention mechanisms. This strategic enhancement enables the model to more adeptly and efficiently capture both local trends and global features, surpassing the performance of standard self-attention approaches. Extensive validation using the NASA and CALCE lithium-ion battery datasets reveals that the proposed model significantly outperforms existing state-of-the-art models across a variety of evaluative metrics. This noteworthy performance underscores the model's advantages in effectively managing the complexities of time-series data for accurate battery capacity prediction.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 6","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10971877/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The prediction of lithium-ion battery capacity plays an essential role in ensuring the reliability and safety of modern electronic devices. To effectively capture the local trend information inherent in lithium-ion batteries and enhance the accuracy of capacity forecasts, this letter presents an innovative Transformer model that incorporates a specialized trend-aware attention mechanism. This novel model synergistically combines the strengths of trend-aware attention and the Transformer encoder. It introduces 1-D convolution within the trend-aware attention framework, thereby replacing the traditional linear projections of queries and keys found in conventional self-attention mechanisms. This strategic enhancement enables the model to more adeptly and efficiently capture both local trends and global features, surpassing the performance of standard self-attention approaches. Extensive validation using the NASA and CALCE lithium-ion battery datasets reveals that the proposed model significantly outperforms existing state-of-the-art models across a variety of evaluative metrics. This noteworthy performance underscores the model's advantages in effectively managing the complexities of time-series data for accurate battery capacity prediction.
利用变压器趋势感知注意力进行锂离子电池容量预测
锂离子电池容量的预测对保证现代电子设备的可靠性和安全性起着至关重要的作用。为了有效地捕捉锂离子电池固有的本地趋势信息并提高容量预测的准确性,这封信提出了一个创新的Transformer模型,该模型包含了专门的趋势感知关注机制。这种新颖的模型协同结合了趋势感知关注和Transformer编码器的优势。它在趋势感知注意框架中引入了1-D卷积,从而取代了传统自注意机制中查询和键的传统线性投影。这种战略性的增强使模型能够更熟练、更有效地捕捉本地趋势和全局特征,超越了标准的自关注方法的性能。使用NASA和CALCE锂离子电池数据集进行的广泛验证表明,所提出的模型在各种评估指标上都明显优于现有的最先进模型。这一值得注意的性能强调了该模型在有效管理时间序列数据的复杂性以准确预测电池容量方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信