{"title":"Polymer Waveguide-Based Crossing Waveguides and Adiabatic-Tapered Directional Couplers for Fiber Compatible Optical Interconnect","authors":"Xiaofeng Liu;Quandong Huang;Bin Xiao;Quankeng Huang;Jiaqi Ran;Zhanxiong Qiu;Shijie Liang;Qingming Chen;Wenchao Jiang;Zhaoqiang Zheng;Xinyong Dong;Sławomir Ertman;Yuwen Qin","doi":"10.1109/JPHOT.2025.3564794","DOIUrl":null,"url":null,"abstract":"Photonic integrated circuits have intrinsic merits of high integration, large bandwidth, and flexible design, which play an important role in optical communication systems for the interconnect. To increase the integration and routing of photonic circuits for manipulating the guide modes, we propose a simple and effective fiber compatible crossing waveguide to optimize the device layouts. To demonstrate the idea, we fabricated the device through optical lithography, and then optimized the processing parameters based on the analysis of image processing after fabrication, where the fabricated device shows an insertion loss lower than a maximum 1.0 dB with the crossing waveguides perpendicular to each other and operation wavelength from 1450 nm to 1630 nm for the operation of the E<sub>21</sub> and E<sub>11</sub> modes. The device offers the ability to manipulate guide modes without being affected by the waveguide crossing, which can provide a powerful way to form fiber compatible integrated photonic circuits.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 3","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10977837","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10977837/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Photonic integrated circuits have intrinsic merits of high integration, large bandwidth, and flexible design, which play an important role in optical communication systems for the interconnect. To increase the integration and routing of photonic circuits for manipulating the guide modes, we propose a simple and effective fiber compatible crossing waveguide to optimize the device layouts. To demonstrate the idea, we fabricated the device through optical lithography, and then optimized the processing parameters based on the analysis of image processing after fabrication, where the fabricated device shows an insertion loss lower than a maximum 1.0 dB with the crossing waveguides perpendicular to each other and operation wavelength from 1450 nm to 1630 nm for the operation of the E21 and E11 modes. The device offers the ability to manipulate guide modes without being affected by the waveguide crossing, which can provide a powerful way to form fiber compatible integrated photonic circuits.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.