Explainable Reinforcement and Causal Learning for Improving Trust to 6G Stakeholders

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Miguel Arana-Catania;Amir Sonee;Abdul-Manan Khan;Kavan Fatehi;Yun Tang;Bailu Jin;Anna Soligo;David Boyle;Radu Calinescu;Poonam Yadav;Hamed Ahmadi;Antonios Tsourdos;Weisi Guo;Alessandra Russo
{"title":"Explainable Reinforcement and Causal Learning for Improving Trust to 6G Stakeholders","authors":"Miguel Arana-Catania;Amir Sonee;Abdul-Manan Khan;Kavan Fatehi;Yun Tang;Bailu Jin;Anna Soligo;David Boyle;Radu Calinescu;Poonam Yadav;Hamed Ahmadi;Antonios Tsourdos;Weisi Guo;Alessandra Russo","doi":"10.1109/OJCOMS.2025.3563415","DOIUrl":null,"url":null,"abstract":"Future telecommunications will increasingly integrate AI capabilities into network infrastructures to deliver seamless and harmonized services closer to end-users. However, this progress also raises significant trust and safety concerns. The machine learning systems orchestrating these advanced services will widely rely on deep reinforcement learning (DRL) to process multi-modal requirements datasets and make semantically modulated decisions, introducing three major challenges: (1) First, we acknowledge that most explainable AI research is stakeholder-agnostic while, in reality, the explanations must cater for diverse telecommunications stakeholders, including network service providers, legal authorities, and end users, each with unique goals and operational practices; (2) Second, DRL lacks prior models or established frameworks to guide the creation of meaningful long-term explanations of the agent’s behaviour in a goal-oriented RL task, and we introduce state-of-the-art approaches such as reward machine and sub-goal automata that can be universally represented and easily manipulated by logic programs and verifiably learned by inductive logic programming of answer set programs; (3) Third, most explainability approaches focus on correlation rather than causation, and we emphasise that understanding causal learning can further enhance 6G network optimisation. Together, in our judgement they form crucial enabling technologies for trustworthy services in 6G. This review offers a timely resource for academic researchers and industry practitioners by highlighting the methodological advancements needed for explainable DRL (X-DRL) in 6G. It identifies key stakeholder groups, maps their needs to X-DRL solutions, and presents case studies showcasing practical applications. By identifying and analysing these challenges in the context of 6G case studies, this work aims to inform future research, transform industry practices, and highlight unresolved gaps in this rapidly evolving field.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"4101-4125"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973290","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10973290/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Future telecommunications will increasingly integrate AI capabilities into network infrastructures to deliver seamless and harmonized services closer to end-users. However, this progress also raises significant trust and safety concerns. The machine learning systems orchestrating these advanced services will widely rely on deep reinforcement learning (DRL) to process multi-modal requirements datasets and make semantically modulated decisions, introducing three major challenges: (1) First, we acknowledge that most explainable AI research is stakeholder-agnostic while, in reality, the explanations must cater for diverse telecommunications stakeholders, including network service providers, legal authorities, and end users, each with unique goals and operational practices; (2) Second, DRL lacks prior models or established frameworks to guide the creation of meaningful long-term explanations of the agent’s behaviour in a goal-oriented RL task, and we introduce state-of-the-art approaches such as reward machine and sub-goal automata that can be universally represented and easily manipulated by logic programs and verifiably learned by inductive logic programming of answer set programs; (3) Third, most explainability approaches focus on correlation rather than causation, and we emphasise that understanding causal learning can further enhance 6G network optimisation. Together, in our judgement they form crucial enabling technologies for trustworthy services in 6G. This review offers a timely resource for academic researchers and industry practitioners by highlighting the methodological advancements needed for explainable DRL (X-DRL) in 6G. It identifies key stakeholder groups, maps their needs to X-DRL solutions, and presents case studies showcasing practical applications. By identifying and analysing these challenges in the context of 6G case studies, this work aims to inform future research, transform industry practices, and highlight unresolved gaps in this rapidly evolving field.
6G利益相关者信任提升的可解释强化与因果学习
未来的电信将越来越多地将人工智能功能集成到网络基础设施中,以便更接近最终用户提供无缝和协调的服务。然而,这一进展也引发了重大的信任和安全问题。协调这些高级服务的机器学习系统将广泛依赖深度强化学习(DRL)来处理多模态需求数据集并做出语义调制决策,这带来了三大挑战:(1)首先,我们承认大多数可解释的人工智能研究是利益相关者不可知的,而在现实中,解释必须迎合不同的电信利益相关者,包括网络服务提供商、法律当局和最终用户,每个人都有独特的目标和运营实践;(2)其次,DRL缺乏先前的模型或已建立的框架来指导在面向目标的强化学习任务中对智能体行为进行有意义的长期解释,我们引入了最先进的方法,如奖励机和子目标自动机,它们可以被逻辑程序普遍表示并易于操作,并且可以通过答案集程序的归纳逻辑编程验证学习;(3)第三,大多数可解释性方法侧重于相关性而不是因果关系,我们强调理解因果学习可以进一步增强6G网络优化。在我们看来,它们共同构成了6G可靠服务的关键使能技术。本综述通过强调6G中可解释DRL (X-DRL)所需的方法进步,为学术研究人员和行业从业者提供了及时的资源。它确定了关键的利益相关者群体,将他们的需求映射到X-DRL解决方案,并展示了展示实际应用的案例研究。通过在6G案例研究的背景下识别和分析这些挑战,这项工作旨在为未来的研究提供信息,改变行业实践,并突出这一快速发展领域尚未解决的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信