Jing Yang , Yunlong Gan , Mengqi Han , Shiheng Wang , Pengwei Li , Yiqiang Zhang , Gang Li , Yanlin Song
{"title":"Suppression of light-induced phase segregation in all-inorganic wide-bandgap perovskite solar cells via molecular interaction design","authors":"Jing Yang , Yunlong Gan , Mengqi Han , Shiheng Wang , Pengwei Li , Yiqiang Zhang , Gang Li , Yanlin Song","doi":"10.1016/j.jechem.2025.04.046","DOIUrl":null,"url":null,"abstract":"<div><div>Wide-bandgap mixed-halide perovskites, particularly CsPbIBr<sub>2</sub>, hold great promise for multi-junction solar cells due to their well-matched bandgap and all-inorganic material system. However, their inherent susceptibility to light-induced phase segregation (LIPS) limits efficiency and stability. In this work, we investigate the effect of three organic additives—4-cyclopentene-1,3-dione (CPD), maleimide (HPD), and 3,4-dibromo-1H-pyrrole-2,5(2H,5H)-dione (BrPD)—on LIPS in wide-bandgap CsPbIBr<sub>2</sub> perovskite films. The additives form various chemical interactions, including coordination bonds, hydrogen bonds, and ionic bonds, with I<sup>−</sup> and undercoordinated Pb<sup>2+</sup> ions, among which BrPD has the strongest interaction. This interaction regulates crystallization and improves film morphology. The BrPD-modified films have the largest grain size and the highest light stability, suppressing LIPS, enhancing carrier transfer, and improving device performance. BrPD-modified CsPbIBr<sub>2</sub>-based solar cells achieve a power conversion efficiency (PCE) of 11.34%, outperforming the control (8.96%) and other additives. Moreover, BrPD-modified devices show excellent stability, retaining 94% of their initial PCE after 60 min of continuous light exposure. This work highlights the potential of strategically selected organic additives to enhance the stability and performance of perovskite solar cells, offering valuable insights for the design of high-efficiency and long-lasting perovskite-based optoelectronic devices.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"108 ","pages":"Pages 550-557"},"PeriodicalIF":13.1000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625003614","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Wide-bandgap mixed-halide perovskites, particularly CsPbIBr2, hold great promise for multi-junction solar cells due to their well-matched bandgap and all-inorganic material system. However, their inherent susceptibility to light-induced phase segregation (LIPS) limits efficiency and stability. In this work, we investigate the effect of three organic additives—4-cyclopentene-1,3-dione (CPD), maleimide (HPD), and 3,4-dibromo-1H-pyrrole-2,5(2H,5H)-dione (BrPD)—on LIPS in wide-bandgap CsPbIBr2 perovskite films. The additives form various chemical interactions, including coordination bonds, hydrogen bonds, and ionic bonds, with I− and undercoordinated Pb2+ ions, among which BrPD has the strongest interaction. This interaction regulates crystallization and improves film morphology. The BrPD-modified films have the largest grain size and the highest light stability, suppressing LIPS, enhancing carrier transfer, and improving device performance. BrPD-modified CsPbIBr2-based solar cells achieve a power conversion efficiency (PCE) of 11.34%, outperforming the control (8.96%) and other additives. Moreover, BrPD-modified devices show excellent stability, retaining 94% of their initial PCE after 60 min of continuous light exposure. This work highlights the potential of strategically selected organic additives to enhance the stability and performance of perovskite solar cells, offering valuable insights for the design of high-efficiency and long-lasting perovskite-based optoelectronic devices.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy