Carol L. Baumbauer , David A. Baumbauer , Ana C. Arias
{"title":"The effect of soil water content and crop canopy on passive UHF-RFID wireless links","authors":"Carol L. Baumbauer , David A. Baumbauer , Ana C. Arias","doi":"10.1016/j.compag.2025.110506","DOIUrl":null,"url":null,"abstract":"<div><div>High spatial density agricultural sensors that monitor soil fertility and moisture levels are quickly developing and could revolutionize precision agriculture once they are integrated with wireless communication systems. Passive Ultra High Frequency Radio Frequency Identification (UHF-RFID) is a wireless communication protocol for battery-free sensor nodes which could enable continuous soil monitoring. Soil texture, soil water content, and crop canopy impact the vertical read range between a passive RFID tag near the soil and a reader raised above the crop. Here, we evaluated these impacts and found that increases in soil water content decreased read range by 30–40 cm compared to dry soil. Adding 3.4 cm of distance between the wet soil and the tag increased the read range by 1–1.4 m. Crop canopy did not have a significant impact on read range once the soil water content had been accounted for.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"237 ","pages":"Article 110506"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016816992500612X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High spatial density agricultural sensors that monitor soil fertility and moisture levels are quickly developing and could revolutionize precision agriculture once they are integrated with wireless communication systems. Passive Ultra High Frequency Radio Frequency Identification (UHF-RFID) is a wireless communication protocol for battery-free sensor nodes which could enable continuous soil monitoring. Soil texture, soil water content, and crop canopy impact the vertical read range between a passive RFID tag near the soil and a reader raised above the crop. Here, we evaluated these impacts and found that increases in soil water content decreased read range by 30–40 cm compared to dry soil. Adding 3.4 cm of distance between the wet soil and the tag increased the read range by 1–1.4 m. Crop canopy did not have a significant impact on read range once the soil water content had been accounted for.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.