An intelligent framework for sarcasm detection in Arabic tweets using deep learning with Al-Biruni earth radius optimization algorithm

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Reema G. AL-anazi , Muhammad Swaileh A. Alzaidi , Majdy M. Eltahir , Wafa Sulaiman Almukadi , Samah Hazzaa Alajmani , Abdulbasit A. Darem , Mohammed Alshahrani , Nawaf Alhebaishi
{"title":"An intelligent framework for sarcasm detection in Arabic tweets using deep learning with Al-Biruni earth radius optimization algorithm","authors":"Reema G. AL-anazi ,&nbsp;Muhammad Swaileh A. Alzaidi ,&nbsp;Majdy M. Eltahir ,&nbsp;Wafa Sulaiman Almukadi ,&nbsp;Samah Hazzaa Alajmani ,&nbsp;Abdulbasit A. Darem ,&nbsp;Mohammed Alshahrani ,&nbsp;Nawaf Alhebaishi","doi":"10.1016/j.aej.2025.05.040","DOIUrl":null,"url":null,"abstract":"<div><div>Social media networks play a major role in expressing people’s feelings, reviews, and thoughts. One of the popular linguistic patterns to express or criticize one’s ideas with ridicule is sarcasm, where they have unintended and intended meanings in written text. The sarcastic text is used to reverse the polarity of the sentiment. As a result, sarcasm detection in the text positively affects the sentimental analysis (SA) tasks and improves accuracy. The sarcasm recognition of Arabic content is constrained even though Arabic is the most popular language for web content sharing, and yet still naive owing to various challenges, such as the insufficient data sources, the multiple dialects, and the morphological structure of the Arabic language. This study presents an Artificial Intelligence Driven Sarcasm Detection using Optimal Deep Learning (AIDSD-ODL) technique on Arabic tweets. In the AIDSD-ODL technique, a hyperparameter-tuned DL model is utilized to identify sarcastic or non-sarcastic Arabic tweets. At the initial stage, the AIDSD-ODL method undergoes data pre-processing to convert the input tweets into a compatible format. In the next phase, the Glove word embedding process is used in the AIDSD-ODL technique. The self-attention bidirectional long short-term memory (SA-BiLSTM) model is utilized for sarcasm detection. The Al-Biruni Earth Radius (BER) model is implemented for the hyperparameter selection process to enhance the performance of the SA-BiLSTM network. The experimental results of the AIDSD-ODL method are examined under the Arabic tweets dataset. The comparison study of the AIDSD-ODL method portrayed a superior accuracy value of 94.20 % over existing models.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"127 ","pages":"Pages 562-572"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825006659","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Social media networks play a major role in expressing people’s feelings, reviews, and thoughts. One of the popular linguistic patterns to express or criticize one’s ideas with ridicule is sarcasm, where they have unintended and intended meanings in written text. The sarcastic text is used to reverse the polarity of the sentiment. As a result, sarcasm detection in the text positively affects the sentimental analysis (SA) tasks and improves accuracy. The sarcasm recognition of Arabic content is constrained even though Arabic is the most popular language for web content sharing, and yet still naive owing to various challenges, such as the insufficient data sources, the multiple dialects, and the morphological structure of the Arabic language. This study presents an Artificial Intelligence Driven Sarcasm Detection using Optimal Deep Learning (AIDSD-ODL) technique on Arabic tweets. In the AIDSD-ODL technique, a hyperparameter-tuned DL model is utilized to identify sarcastic or non-sarcastic Arabic tweets. At the initial stage, the AIDSD-ODL method undergoes data pre-processing to convert the input tweets into a compatible format. In the next phase, the Glove word embedding process is used in the AIDSD-ODL technique. The self-attention bidirectional long short-term memory (SA-BiLSTM) model is utilized for sarcasm detection. The Al-Biruni Earth Radius (BER) model is implemented for the hyperparameter selection process to enhance the performance of the SA-BiLSTM network. The experimental results of the AIDSD-ODL method are examined under the Arabic tweets dataset. The comparison study of the AIDSD-ODL method portrayed a superior accuracy value of 94.20 % over existing models.
基于Al-Biruni地球半径优化算法的阿拉伯语微博讽刺语深度学习智能检测框架
社交媒体网络在表达人们的感受、评论和想法方面发挥着重要作用。用嘲笑来表达或批评某人的想法的一种流行的语言模式是讽刺,讽刺在书面文本中具有意想不到的和预期的含义。讽刺的文字是用来扭转情绪的两极。因此,文本中的讽刺检测对情感分析(SA)任务产生积极影响,提高了准确性。尽管阿拉伯语是网络内容共享中最流行的语言,但对阿拉伯语内容的讽刺识别仍然受到限制,并且由于各种挑战,例如数据源不足,多种方言以及阿拉伯语的形态结构,阿拉伯语内容的讽刺识别仍然幼稚。本研究提出了一种使用最优深度学习(AIDSD-ODL)技术对阿拉伯语推文进行人工智能驱动的讽刺检测。在AIDSD-ODL技术中,使用超参数调优的深度学习模型来识别讽刺或非讽刺的阿拉伯语推文。在初始阶段,AIDSD-ODL方法进行数据预处理,将输入tweet转换为兼容的格式。下一阶段,在AIDSD-ODL技术中使用手套词嵌入过程。采用自注意双向长短期记忆(SA-BiLSTM)模型进行讽刺语检测。为了提高SA-BiLSTM网络的性能,在超参数选择过程中采用了Al-Biruni地球半径(BER)模型。在阿拉伯语tweets数据集下检验了AIDSD-ODL方法的实验结果。与现有模型相比,AIDSD-ODL方法的准确率高达94.20 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信