Sam Verwimp , Jessica Wagoner , Elijah Gabriela Arenas , Lander De Coninck , Rana Abdelnabi , Jennifer L. Hyde , Joshua T. Schiffer , Judith M. White , Jelle Matthijnssens , Johan Neyts , Stephen J. Polyak , Leen Delang
{"title":"Combinations of approved oral nucleoside analogues confer potent suppression of alphaviruses in vitro and in vivo","authors":"Sam Verwimp , Jessica Wagoner , Elijah Gabriela Arenas , Lander De Coninck , Rana Abdelnabi , Jennifer L. Hyde , Joshua T. Schiffer , Judith M. White , Jelle Matthijnssens , Johan Neyts , Stephen J. Polyak , Leen Delang","doi":"10.1016/j.antiviral.2025.106186","DOIUrl":null,"url":null,"abstract":"<div><div>Alphaviruses, including chikungunya virus (CHIKV), pose a significant global health threat, yet specific antiviral therapies remain unavailable. We evaluated combinations of three oral directly acting antiviral drugs (sofosbuvir (SOF), molnupiravir (MPV), and favipiravir (FAV)), which are approved for other indications, against CHIKV, Semliki Forest virus (SFV), Sindbis virus (SINV), and Venezuelan Equine Encephalitis virus (VEEV) <em>in vitro</em> and <em>in vivo</em>. We assessed antiviral efficacy in human skin fibroblasts and liver cells, as well as in a mouse model of CHIKV-induced arthritis. In human skin fibroblasts, synergistic antiviral effects were observed for combinations of MPV + SOF and FAV + SOF against CHIKV, and for FAV + SOF against SFV. In human liver cells, FAV + MPV conferred additive to synergistic activity against VEEV and SINV, while SOF synergized with FAV against SINV. In mice, MPV improved CHIKV-induced foot swelling and reduced systemic infectious virus titres. Combination treatment with MPV and SOF significantly reduced swelling and infectious titres compared to monotherapies of each drug. Sequencing of CHIKV RNA from joint tissue revealed that MPV caused dose-dependent increases in mutations in the CHIKV genome. Upon combination therapy of MPV with SOF, the number of mutations was significantly lower compared to monotherapy with several higher doses of MPV. Combining these approved oral nucleoside analogues confers potent suppression of multiple alphaviruses <em>in vitro</em> and <em>in vivo</em> with enhanced control of viral genetic evolution in face of antiviral pressure. These drug combinations may ultimately lead to the development of potent combinations of pan-family alphavirus inhibitors.</div></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"239 ","pages":"Article 106186"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354225001123","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Alphaviruses, including chikungunya virus (CHIKV), pose a significant global health threat, yet specific antiviral therapies remain unavailable. We evaluated combinations of three oral directly acting antiviral drugs (sofosbuvir (SOF), molnupiravir (MPV), and favipiravir (FAV)), which are approved for other indications, against CHIKV, Semliki Forest virus (SFV), Sindbis virus (SINV), and Venezuelan Equine Encephalitis virus (VEEV) in vitro and in vivo. We assessed antiviral efficacy in human skin fibroblasts and liver cells, as well as in a mouse model of CHIKV-induced arthritis. In human skin fibroblasts, synergistic antiviral effects were observed for combinations of MPV + SOF and FAV + SOF against CHIKV, and for FAV + SOF against SFV. In human liver cells, FAV + MPV conferred additive to synergistic activity against VEEV and SINV, while SOF synergized with FAV against SINV. In mice, MPV improved CHIKV-induced foot swelling and reduced systemic infectious virus titres. Combination treatment with MPV and SOF significantly reduced swelling and infectious titres compared to monotherapies of each drug. Sequencing of CHIKV RNA from joint tissue revealed that MPV caused dose-dependent increases in mutations in the CHIKV genome. Upon combination therapy of MPV with SOF, the number of mutations was significantly lower compared to monotherapy with several higher doses of MPV. Combining these approved oral nucleoside analogues confers potent suppression of multiple alphaviruses in vitro and in vivo with enhanced control of viral genetic evolution in face of antiviral pressure. These drug combinations may ultimately lead to the development of potent combinations of pan-family alphavirus inhibitors.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.