Molecular dynamics simulation of competitive crystal growth of in SiC with different nuclei: Temperature-dependent crystallization and defect formation

IF 3 Q2 PHYSICS, CONDENSED MATTER
Tinghong Gao , Qinlan Pan , Kaiwen Li , Guiyang Liu , Wanjun Yan
{"title":"Molecular dynamics simulation of competitive crystal growth of in SiC with different nuclei: Temperature-dependent crystallization and defect formation","authors":"Tinghong Gao ,&nbsp;Qinlan Pan ,&nbsp;Kaiwen Li ,&nbsp;Guiyang Liu ,&nbsp;Wanjun Yan","doi":"10.1016/j.micrna.2025.208209","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon carbide (SiC), a third-generation semiconductor distinguished by its wide bandgap, superior thermal conductivity, and exceptional electron saturation velocity, has become indispensable for aerospace and defense systems requiring extreme operational reliability. Optimizing SiC's crystalline perfection is critical for high-power devices, necessitating atomic-scale insights into its growth thermodynamics. This study conducted large-scale molecular dynamics simulations to elucidate polytype-specific crystallization mechanisms in pure SiC melts across 2800–3250 K. Radial distribution function analysis, time-resolved crystallization kinetics, and defect visualization revealed temperature-dependent growth regimes: low-temperature conditions exhibited nucleation suppression, while high-temperature regimes promoted competitive growth between cubic (3C–SiC) and hexagonal (4H–SiC) polytypes, highlighting the importance of temperature control in optimizing crystal quality. This study enhances our understanding of the crystallization process of SiC and provides theoretical insights for the production of high-performance power semiconductors.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"205 ","pages":"Article 208209"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon carbide (SiC), a third-generation semiconductor distinguished by its wide bandgap, superior thermal conductivity, and exceptional electron saturation velocity, has become indispensable for aerospace and defense systems requiring extreme operational reliability. Optimizing SiC's crystalline perfection is critical for high-power devices, necessitating atomic-scale insights into its growth thermodynamics. This study conducted large-scale molecular dynamics simulations to elucidate polytype-specific crystallization mechanisms in pure SiC melts across 2800–3250 K. Radial distribution function analysis, time-resolved crystallization kinetics, and defect visualization revealed temperature-dependent growth regimes: low-temperature conditions exhibited nucleation suppression, while high-temperature regimes promoted competitive growth between cubic (3C–SiC) and hexagonal (4H–SiC) polytypes, highlighting the importance of temperature control in optimizing crystal quality. This study enhances our understanding of the crystallization process of SiC and provides theoretical insights for the production of high-performance power semiconductors.
不同核SiC竞争性晶体生长的分子动力学模拟:温度依赖结晶和缺陷形成
碳化硅(SiC)是第三代半导体,以其宽带隙、优越的导热性和卓越的电子饱和速度而闻名,已成为航空航天和国防系统中需要极高运行可靠性的不可或缺的材料。优化SiC的晶体完美性对于大功率器件至关重要,需要在原子尺度上对其生长热力学进行深入研究。本研究进行了大规模的分子动力学模拟,以阐明纯SiC熔体在2800-3250 K范围内的多型特定结晶机制。径向分布函数分析、时间分辨结晶动力学和缺陷可视化揭示了温度依赖的生长机制:低温条件抑制成核,而高温条件促进立方(3C-SiC)和六方(4H-SiC)多型之间的竞争生长,突出了温度控制在优化晶体质量中的重要性。本研究提高了我们对碳化硅结晶过程的理解,并为高性能功率半导体的生产提供了理论见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信