A fully coupled thermal-fluid-electric-mechanics multiphysics numerical model for comprehensive performance evaluation of annular thermoelectric generators

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Ding Luo , Zheng Li , Ying Li , Haokang Zhang , Xuehui Wang
{"title":"A fully coupled thermal-fluid-electric-mechanics multiphysics numerical model for comprehensive performance evaluation of annular thermoelectric generators","authors":"Ding Luo ,&nbsp;Zheng Li ,&nbsp;Ying Li ,&nbsp;Haokang Zhang ,&nbsp;Xuehui Wang","doi":"10.1016/j.csite.2025.106329","DOIUrl":null,"url":null,"abstract":"<div><div>The maximum thermal stress is an important indicator for evaluating the thermal reliability of thermoelectric generators (TEGs), but theoretical models to simultaneously predict the thermoelectric and thermomechanical performance of TEGs are lacking. Therefore, a fully coupled thermal-fluid-electric-mechanics multiphysics numerical model is established, and it is adopted to conduct a comprehensive numerical analysis of an annular TEG. Additionally, the influences of geometric parameters (height <em>h</em> and angle <span><math><mrow><mi>θ</mi></mrow></math></span>) of thermoelectric elements and exhaust conditions on the performance of the annular TEG are studied. Numerical results reveal that reducing the thermoelectric element height (<em>h</em>) from 5 mm to 2 mm under <em>T</em><sub>in</sub> = 550 K and <em>ṁ</em><sub>ex</sub> = 30 g/s enhances output power by 27.6 % (10.97 W–14.02 W) but lowers conversion efficiency from 3.41 % to 2.99 %, while maximum thermal stress decreases by 11.6 % (289.72 MPa–256.07 MPa). Increasing the angle (<em>θ</em>) from 4° to 7° elevates output power by 11.6 % (12.94 W–14.44 W) yet reduces efficiency by 14.4 % (3.34 %–2.86 %), with thermal stress amplified for larger <em>θ</em>–<em>θ</em><sub>s</sub> mismatches. Both the thermoelectric and thermomechanical performance of the annular TEG are more significantly affected by exhaust temperature compared to mass flow rate. This model integrates fluid dynamics and thermal-electric-mechanics coupling, overcoming limitations of prior studies that simplified boundary conditions. It provides actionable insights for optimizing annular TEGs in automotive waste heat recovery, balancing thermoelectric performance and thermomechanical performance.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"72 ","pages":"Article 106329"},"PeriodicalIF":6.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25005891","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The maximum thermal stress is an important indicator for evaluating the thermal reliability of thermoelectric generators (TEGs), but theoretical models to simultaneously predict the thermoelectric and thermomechanical performance of TEGs are lacking. Therefore, a fully coupled thermal-fluid-electric-mechanics multiphysics numerical model is established, and it is adopted to conduct a comprehensive numerical analysis of an annular TEG. Additionally, the influences of geometric parameters (height h and angle θ) of thermoelectric elements and exhaust conditions on the performance of the annular TEG are studied. Numerical results reveal that reducing the thermoelectric element height (h) from 5 mm to 2 mm under Tin = 550 K and ex = 30 g/s enhances output power by 27.6 % (10.97 W–14.02 W) but lowers conversion efficiency from 3.41 % to 2.99 %, while maximum thermal stress decreases by 11.6 % (289.72 MPa–256.07 MPa). Increasing the angle (θ) from 4° to 7° elevates output power by 11.6 % (12.94 W–14.44 W) yet reduces efficiency by 14.4 % (3.34 %–2.86 %), with thermal stress amplified for larger θθs mismatches. Both the thermoelectric and thermomechanical performance of the annular TEG are more significantly affected by exhaust temperature compared to mass flow rate. This model integrates fluid dynamics and thermal-electric-mechanics coupling, overcoming limitations of prior studies that simplified boundary conditions. It provides actionable insights for optimizing annular TEGs in automotive waste heat recovery, balancing thermoelectric performance and thermomechanical performance.
环形热电发电机综合性能评价的热-流-电-力全耦合多物理场数值模型
最大热应力是评价热电发电机热可靠性的重要指标,但目前缺乏能同时预测热电发电机热电性能和热力学性能的理论模型。为此,建立了一个热-流-电-力全耦合的多物理场数值模型,并采用该模型对环空TEG进行了全面的数值分析。此外,还研究了热电元件的几何参数(高度h和角度θ)和排气条件对环形TEG性能的影响。数值结果表明,在Tin = 550 K, ṁex = 30 g/s条件下,将热电元件高度(h)从5 mm降低到2 mm,输出功率提高27.6% (10.97 W - 14.02 W),转换效率从3.41%降低到2.99%,最大热应力降低11.6% (289.72 MPa - 256.07 MPa)。将角度(θ)从4°增加到7°,输出功率提高11.6% (12.94 W - 14.44 W),但效率降低14.4%(3.34% - 2.86%),较大的θ -θs不匹配会放大热应力。与质量流量相比,排气温度对环形TEG热电性能和热力性能的影响更为显著。该模型集成了流体动力学和热电力学耦合,克服了以往研究简化边界条件的局限性。它为优化汽车废热回收中的环形TEGs,平衡热电性能和热机械性能提供了可行的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信