Xinlong Lu , Devendra Yadav , Baichuan He , Yu Zhou , Liwu Zhou , Zilong Zeng , Lijing Ma , Dengwei Jing
{"title":"Unveiling micro- and nanoscale bubble dynamics for enhanced electrochemical water splitting","authors":"Xinlong Lu , Devendra Yadav , Baichuan He , Yu Zhou , Liwu Zhou , Zilong Zeng , Lijing Ma , Dengwei Jing","doi":"10.1016/j.cis.2025.103544","DOIUrl":null,"url":null,"abstract":"<div><div>Bubbles generated during electrochemical and photoelectrochemical water splitting critically influence efficiency through complex factors, including chemical reactions, species transport, mass transfer at the three-phase interface, and bubble coverage. A detailed understanding of the nucleation, growth, coalescence, and detachment of micro- and nanoscale bubbles is vital for advancing water splitting technologies. Surface-attached bubbles significantly reduce the electrocatalytically active area of electrodes, leading to increased surface overpotential at a given current density. Consequently, their effective removal is pivotal for optimizing the electrolysis process. However, the intricate interplay among single bubble evolution, mass transport, bubble coverage, and overpotential remain inadequately understood. This review explores the fundamental mechanisms underpinning bubble evolution, with an emphasis on the Marangoni effect and its influence on bubble dynamics. Furthermore, recent advancements in understanding individual bubbles on micro and nano-electrodes are highlighted, offering valuable insights into scale-dependent bubble behavior. These findings enrich our knowledge of gas-liquid interfacial phenomena and underscore their industrial significance, presenting opportunities to enhance water splitting performance through optimized bubble dynamics.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"343 ","pages":"Article 103544"},"PeriodicalIF":19.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625001551","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bubbles generated during electrochemical and photoelectrochemical water splitting critically influence efficiency through complex factors, including chemical reactions, species transport, mass transfer at the three-phase interface, and bubble coverage. A detailed understanding of the nucleation, growth, coalescence, and detachment of micro- and nanoscale bubbles is vital for advancing water splitting technologies. Surface-attached bubbles significantly reduce the electrocatalytically active area of electrodes, leading to increased surface overpotential at a given current density. Consequently, their effective removal is pivotal for optimizing the electrolysis process. However, the intricate interplay among single bubble evolution, mass transport, bubble coverage, and overpotential remain inadequately understood. This review explores the fundamental mechanisms underpinning bubble evolution, with an emphasis on the Marangoni effect and its influence on bubble dynamics. Furthermore, recent advancements in understanding individual bubbles on micro and nano-electrodes are highlighted, offering valuable insights into scale-dependent bubble behavior. These findings enrich our knowledge of gas-liquid interfacial phenomena and underscore their industrial significance, presenting opportunities to enhance water splitting performance through optimized bubble dynamics.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.