{"title":"Intelligent integration of AI and IoT for advancing ecological health, medical services, and community prosperity","authors":"Abdulrahman Alzahrani , Patty Kostkova , Hamoud Alshammari , Safa Habibullah , Ahmed Alzahrani","doi":"10.1016/j.aej.2025.05.046","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial Intelligence (AI) and the Internet of Things (IoT) are developing so fast that they can bring revolutionary changes in ecological sustainability, public health, and community welfare. In contrast, the present waste management system has a set of inefficiencies due to some challenges, such as poor waste stream segregation, limited real-time data analysis, and negligible integration of recent technology. These challenges lead to environmental degradation, public health hazards, and inefficient usage of resources. This research targets these challenges by designing an IWM framework like AI-IoT for smart waste management. The system employs AI models powered by IoT sensors for efficient waste collection, classification, and optimization of recycling schedules. CNN (convolutional neural networks) with transfer learning enabled by Res-Net provides high-accuracy image recognition, which can be used for waste classification. Bidirectional Encoder Representations from Transformers (BERT) allow multilingual users to interact and communicate properly in any linguistic environment. Data collected from IoT-enabled smart bins is transmitted in real-time to a central control system for dynamic decision-making and follow-up analysis. A pilot exercise to verify the system's effectiveness was implemented in metropolitan settings to show the transformation: landfill dependency was decreased by 30 %, recycling efficiency was greatly increased to 90 %, and thus the cost of waste management was optimized. At the same time, environmental health inequity, causing pathogen-related threats, was reduced by 35 %. The model has an accuracy of 96.8 %. The features of the proposed framework not only provide solutions to the existing inefficiencies but also enhance scalability, cost-effectiveness, and global environmental standardization. This dawns the futuristic growth of AI- and IoT-enabled waste management systems, which hinge on sustainability, public health, and resource efficiency. This research also sets standards for how new technologies can be successfully interfaced toward waste-environment, waste-health, and waste-community issues.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"127 ","pages":"Pages 522-540"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825006611","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial Intelligence (AI) and the Internet of Things (IoT) are developing so fast that they can bring revolutionary changes in ecological sustainability, public health, and community welfare. In contrast, the present waste management system has a set of inefficiencies due to some challenges, such as poor waste stream segregation, limited real-time data analysis, and negligible integration of recent technology. These challenges lead to environmental degradation, public health hazards, and inefficient usage of resources. This research targets these challenges by designing an IWM framework like AI-IoT for smart waste management. The system employs AI models powered by IoT sensors for efficient waste collection, classification, and optimization of recycling schedules. CNN (convolutional neural networks) with transfer learning enabled by Res-Net provides high-accuracy image recognition, which can be used for waste classification. Bidirectional Encoder Representations from Transformers (BERT) allow multilingual users to interact and communicate properly in any linguistic environment. Data collected from IoT-enabled smart bins is transmitted in real-time to a central control system for dynamic decision-making and follow-up analysis. A pilot exercise to verify the system's effectiveness was implemented in metropolitan settings to show the transformation: landfill dependency was decreased by 30 %, recycling efficiency was greatly increased to 90 %, and thus the cost of waste management was optimized. At the same time, environmental health inequity, causing pathogen-related threats, was reduced by 35 %. The model has an accuracy of 96.8 %. The features of the proposed framework not only provide solutions to the existing inefficiencies but also enhance scalability, cost-effectiveness, and global environmental standardization. This dawns the futuristic growth of AI- and IoT-enabled waste management systems, which hinge on sustainability, public health, and resource efficiency. This research also sets standards for how new technologies can be successfully interfaced toward waste-environment, waste-health, and waste-community issues.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering