One-step fabricated multifunctional nanocomposite coatings with dynamic dewetting and active deicing for harsh environments

IF 6.5 2区 材料科学 Q1 CHEMISTRY, APPLIED
Zhijie Liu , Linbo Zhang , Huyin Yan , Jing Guo , Le Yuan , Haipeng Lu , Liangjun Yin
{"title":"One-step fabricated multifunctional nanocomposite coatings with dynamic dewetting and active deicing for harsh environments","authors":"Zhijie Liu ,&nbsp;Linbo Zhang ,&nbsp;Huyin Yan ,&nbsp;Jing Guo ,&nbsp;Le Yuan ,&nbsp;Haipeng Lu ,&nbsp;Liangjun Yin","doi":"10.1016/j.porgcoat.2025.109386","DOIUrl":null,"url":null,"abstract":"<div><div>Ice accretion on wind turbine blades critically compromises energy conversion efficiency (≤80 %) and structural integrity. Herein, we propose a fluorine-free multifunctional coating integrating synergistic photothermal and superhydrophobic mechanisms for sustainable anti-icing applications. The rationally designed P-CNT/PDMS/EP composite, synthesized via a single-step blade-coating technique, demonstrates simultaneous ultra-repellency (150.43° static contact angle, 3.94° sliding angle) and efficient solar energy conversion (94.88 % broadband absorption). Under simulated extreme conditions (−20 °C, 15 m·s<sup>−1</sup> crosswinds), the coating achieves rapid ice shedding within 240 s through photothermal activation while maintaining 95 % hydrophobicity retention after mechanical abrasion. Notably, ice accumulation reduces to 2 % of uncoated surfaces, coupled with exceptional environmental stability (ΔCA &lt;2° after 30-day UV/thermal aging). Multiphysics simulations incorporating phase-change dynamics and turbulent flow interactions validate year-round operational reliability across temperate to polar climates. This paradigm-shifting strategy addresses the critical durability challenges in conventional anti-icing technologies while aligning with green chemistry principles for renewable energy infrastructure.</div></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":"206 ","pages":"Article 109386"},"PeriodicalIF":6.5000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944025003352","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Ice accretion on wind turbine blades critically compromises energy conversion efficiency (≤80 %) and structural integrity. Herein, we propose a fluorine-free multifunctional coating integrating synergistic photothermal and superhydrophobic mechanisms for sustainable anti-icing applications. The rationally designed P-CNT/PDMS/EP composite, synthesized via a single-step blade-coating technique, demonstrates simultaneous ultra-repellency (150.43° static contact angle, 3.94° sliding angle) and efficient solar energy conversion (94.88 % broadband absorption). Under simulated extreme conditions (−20 °C, 15 m·s−1 crosswinds), the coating achieves rapid ice shedding within 240 s through photothermal activation while maintaining 95 % hydrophobicity retention after mechanical abrasion. Notably, ice accumulation reduces to 2 % of uncoated surfaces, coupled with exceptional environmental stability (ΔCA <2° after 30-day UV/thermal aging). Multiphysics simulations incorporating phase-change dynamics and turbulent flow interactions validate year-round operational reliability across temperate to polar climates. This paradigm-shifting strategy addresses the critical durability challenges in conventional anti-icing technologies while aligning with green chemistry principles for renewable energy infrastructure.
一步制备具有动态除湿和主动除冰功能的多功能纳米复合涂层
风力涡轮机叶片上的冰积严重影响能量转换效率(≤80%)和结构完整性。在此,我们提出了一种集协同光热和超疏水机制为一体的无氟多功能涂层,用于可持续的防冰应用。合理设计的P-CNT/PDMS/EP复合材料,通过单步叶片涂层技术合成,同时具有超驱避性(150.43°静态接触角,3.94°滑动角)和高效太阳能转换(94.88%宽带吸收)。在模拟的极端条件下(- 20°C, 15 m·s−1侧风),涂层通过光热活化在240 s内实现快速脱冰,同时在机械磨损后保持95%的疏水性。值得注意的是,未涂层表面的积冰减少到2%,再加上卓越的环境稳定性(ΔCA <; 30天紫外线/热老化后2°)。结合相变动力学和湍流相互作用的多物理场模拟验证了温带到极地气候的全年运行可靠性。这一转变模式的战略解决了传统防冰技术在耐久性方面的关键挑战,同时符合可再生能源基础设施的绿色化学原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Organic Coatings
Progress in Organic Coatings 工程技术-材料科学:膜
CiteScore
11.40
自引率
15.20%
发文量
577
审稿时长
48 days
期刊介绍: The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as: • Chemical, physical and technological properties of organic coatings and related materials • Problems and methods of preparation, manufacture and application of these materials • Performance, testing and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信