Bioinspired Janus interlocked MXene/perovskite-PDMS composites for integrated thermal visualization, rapid-heat dissipation, and proactive fire safety in high-power electronics

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Xu Yang , Yujie Li , Nvfan Tang , Weizhen Li , Shiqiang Song , Yong Zhang
{"title":"Bioinspired Janus interlocked MXene/perovskite-PDMS composites for integrated thermal visualization, rapid-heat dissipation, and proactive fire safety in high-power electronics","authors":"Xu Yang ,&nbsp;Yujie Li ,&nbsp;Nvfan Tang ,&nbsp;Weizhen Li ,&nbsp;Shiqiang Song ,&nbsp;Yong Zhang","doi":"10.1016/j.compositesb.2025.112615","DOIUrl":null,"url":null,"abstract":"<div><div>The development of polymer-based composites that integrate high thermal conductivity, flame retardancy, and intelligent sensing capabilities is critical for advancing thermal management in modern electronics. Inspired by natural hierarchical architectures, this study introduces a Janus interlocked-structured polydimethylsiloxane (PDMS) composite, synergizing MXene nanosheets and thermochromic perovskite (MAPb<sub>x</sub>Br<sub>y</sub>) for multifunctional performance. A 3D snowflake-patterned PDMS skeleton is designed to host an interconnected MXene network, achieving exceptional thermal conductivity (1.32 k/W·m, 680 % enhancement over pure PDMS) and flame retardancy (33 % reduction in peak heat release rate, 90.3 % residue retention). Simultaneously, the perovskite overlayer enables real-time temperature visualization through reversible color transitions (yellow → red → black) within 15 s, triggered by phase transformations at critical thresholds (60–120 °C). The Janus architecture spatially decouples functional units while ensuring synergistic interactions, offering dual protection against thermal hazards: rapid heat dissipation via MXene pathways and proactive fire warning via thermochromic responses. Demonstrated in battery thermal management, the composite reduces surface temperatures by 19.1 °C under high discharge rates (6.16C), highlighting its potential for safeguarding miniaturized and high-power electronic systems. This work pioneers a multifunctional material platform that synergizes “sense-conduct-protect” mechanisms, providing a transformative solution for next-generation electronics and energy storage systems.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"303 ","pages":"Article 112615"},"PeriodicalIF":12.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825005165","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of polymer-based composites that integrate high thermal conductivity, flame retardancy, and intelligent sensing capabilities is critical for advancing thermal management in modern electronics. Inspired by natural hierarchical architectures, this study introduces a Janus interlocked-structured polydimethylsiloxane (PDMS) composite, synergizing MXene nanosheets and thermochromic perovskite (MAPbxBry) for multifunctional performance. A 3D snowflake-patterned PDMS skeleton is designed to host an interconnected MXene network, achieving exceptional thermal conductivity (1.32 k/W·m, 680 % enhancement over pure PDMS) and flame retardancy (33 % reduction in peak heat release rate, 90.3 % residue retention). Simultaneously, the perovskite overlayer enables real-time temperature visualization through reversible color transitions (yellow → red → black) within 15 s, triggered by phase transformations at critical thresholds (60–120 °C). The Janus architecture spatially decouples functional units while ensuring synergistic interactions, offering dual protection against thermal hazards: rapid heat dissipation via MXene pathways and proactive fire warning via thermochromic responses. Demonstrated in battery thermal management, the composite reduces surface temperatures by 19.1 °C under high discharge rates (6.16C), highlighting its potential for safeguarding miniaturized and high-power electronic systems. This work pioneers a multifunctional material platform that synergizes “sense-conduct-protect” mechanisms, providing a transformative solution for next-generation electronics and energy storage systems.
仿生Janus联锁MXene/钙钛矿- pdms复合材料,用于集成热可视化,快速散热和主动消防安全的大功率电子产品
开发集高导热性、阻燃性和智能传感能力于一体的聚合物基复合材料对于推进现代电子产品的热管理至关重要。受自然分层结构的启发,本研究引入了Janus互锁结构聚二甲基硅氧烷(PDMS)复合材料,将MXene纳米片和热致变色钙钛矿(MAPbxBry)协同作用,以实现多功能性能。3D雪花图案的PDMS骨架设计用于承载相互连接的MXene网络,实现卓越的导热性(1.32 k/W·m,比纯PDMS提高680%)和阻燃性(峰值热释放率降低33%,残留保留率降低90.3%)。同时,钙钛矿覆盖层通过15 s内可逆的颜色转变(黄色→红色→黑色)实现实时温度可视化,由临界阈值(60-120℃)的相变触发。Janus建筑在空间上分离了功能单元,同时确保了协同作用,提供了双重保护,防止热危害:通过MXene途径快速散热,通过热致变色反应主动发出火灾警报。在电池热管理方面,该复合材料在高放电率(6.16C)下可将表面温度降低19.1°C,突出了其保护小型化和大功率电子系统的潜力。这项工作开创了一种多功能材料平台,可以协同“感知-行为-保护”机制,为下一代电子和储能系统提供变革性解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信