Investigation of particle deposition and power efficiency reduction of dust-laden wind flow over photovoltaic modules considering particle resuspension behaviors

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Huiquan Liu , Hao Lu , Wenjun Zhao , Zunshi Han , Chuanxiao Zheng
{"title":"Investigation of particle deposition and power efficiency reduction of dust-laden wind flow over photovoltaic modules considering particle resuspension behaviors","authors":"Huiquan Liu ,&nbsp;Hao Lu ,&nbsp;Wenjun Zhao ,&nbsp;Zunshi Han ,&nbsp;Chuanxiao Zheng","doi":"10.1016/j.solener.2025.113562","DOIUrl":null,"url":null,"abstract":"<div><div>Solar energy, as a key renewable resource, has been widely adopted worldwide in recent years. However, dust particle deposition on photovoltaic (PV) modules can reduce power generation efficiency, particularly in dust-prone regions. To better understand the behavior of particle deposition and resuspension, this study develops a coupled computational fluid dynamics–discrete element method (CFD-DEM) multiphysics model. The model considers the deposition and resuspension of particles. The model can capture particle dynamics, including collision, rolling, sliding, rebound, and resuspension. The study investigate the effects of wind speed <span><math><msub><mi>U</mi><mrow><mi>Hp</mi></mrow></msub></math></span>, particle diameter <span><math><msub><mi>d</mi><mi>p</mi></msub></math></span>, and module tilt angle <em>θ</em> on resuspension rates and their consequent impact on PV performance. The results indicated that the PV module’s <em>θ</em> significantly influenced the particles resuspension behavior. At <em>θ</em> = 140<em>°</em>, <span><math><msub><mi>d</mi><mi>p</mi></msub></math></span> =200 μm and <span><math><msub><mi>U</mi><mrow><mi>Hp</mi></mrow></msub></math></span> = 5.2 m/s, the resuspension rate <span><math><msub><mi>η</mi><mrow><mi>resusp</mi></mrow></msub></math></span> peaked at 99.7 %, significantly higher than at other angles. Moreover, 100 μm-300 μm particles showed higher susceptibility to resuspension, especially under higher airflow velocities. Finally, an empirical formula was employed to predict the effect of particle resuspension on PV power generation efficiency, with the performance loss ratio (PLR) used to quantify the reduction in efficiency loss due to resuspension. At <em>θ</em> = 140<em>°</em>, <span><math><msub><mi>d</mi><mi>p</mi></msub></math></span>=100 μm and <span><math><msub><mi>U</mi><mrow><mi>Hp</mi></mrow></msub></math></span> = 5.2 m/s, the PLR reached a maximum of 99.6 %, indicating the most effective cleaning effect from resuspension in this case.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"296 ","pages":"Article 113562"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25003251","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Solar energy, as a key renewable resource, has been widely adopted worldwide in recent years. However, dust particle deposition on photovoltaic (PV) modules can reduce power generation efficiency, particularly in dust-prone regions. To better understand the behavior of particle deposition and resuspension, this study develops a coupled computational fluid dynamics–discrete element method (CFD-DEM) multiphysics model. The model considers the deposition and resuspension of particles. The model can capture particle dynamics, including collision, rolling, sliding, rebound, and resuspension. The study investigate the effects of wind speed UHp, particle diameter dp, and module tilt angle θ on resuspension rates and their consequent impact on PV performance. The results indicated that the PV module’s θ significantly influenced the particles resuspension behavior. At θ = 140°, dp =200 μm and UHp = 5.2 m/s, the resuspension rate ηresusp peaked at 99.7 %, significantly higher than at other angles. Moreover, 100 μm-300 μm particles showed higher susceptibility to resuspension, especially under higher airflow velocities. Finally, an empirical formula was employed to predict the effect of particle resuspension on PV power generation efficiency, with the performance loss ratio (PLR) used to quantify the reduction in efficiency loss due to resuspension. At θ = 140°, dp=100 μm and UHp = 5.2 m/s, the PLR reached a maximum of 99.6 %, indicating the most effective cleaning effect from resuspension in this case.
考虑颗粒重悬浮行为的光伏组件上粉尘风的颗粒沉积和功率降低研究
太阳能作为一种重要的可再生能源,近年来在世界范围内得到了广泛的应用。然而,光伏(PV)组件上的粉尘颗粒沉积会降低发电效率,特别是在粉尘易发地区。为了更好地理解颗粒沉积和再悬浮的行为,本研究建立了计算流体动力学-离散元法(CFD-DEM)耦合多物理场模型。该模型考虑了颗粒的沉积和再悬浮。该模型可以捕捉粒子的动力学,包括碰撞、滚动、滑动、反弹和再悬浮。研究了风速UHp、颗粒直径dp和组件倾角θ对再悬浮速率的影响及其对PV性能的影响。结果表明,PV组件的θ对颗粒的再悬浮行为有显著影响。当θ = 140°,dp =200 μm, UHp = 5.2 m/s时,η再悬浮率达到99.7%,显著高于其他角度。100 μm ~ 300 μm颗粒对再悬浮的敏感性更高,特别是在较高的气流速度下。最后,利用经验公式预测颗粒重悬浮对光伏发电效率的影响,并利用性能损失率(PLR)量化重悬浮对效率损失的降低程度。当θ = 140°,dp=100 μm, UHp = 5.2 m/s时,PLR最高达到99.6%,表明该方法的清洗效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信