María Agustina Pavicich , María Luisa Maldonado , Truong Nhat Nguyen , Marthe De Boevre , Sarah De Saeger , Andrea Patriarca
{"title":"Insights into Alternaria in apple fruit causing mouldy core, external infection and mycotoxin production under retail and storage conditions","authors":"María Agustina Pavicich , María Luisa Maldonado , Truong Nhat Nguyen , Marthe De Boevre , Sarah De Saeger , Andrea Patriarca","doi":"10.1016/j.ijfoodmicro.2025.111272","DOIUrl":null,"url":null,"abstract":"<div><div>Apple fruit is widely consumed worldwide, but fungal contamination in the postharvest stage presents a significant food safety concern. This study evaluates the production and accumulation of <em>Alternaria</em> mycotoxins, including alternariol (AOH), alternariol monomethyl-ether (AME), and the modified forms (AOH-3-S, AME-3-S, AOH-3-G, AME-3-G), altenuene (ALT), tenuazonic acid (TeA), tentoxin (TEN), altertoxin I and II (ATX<img>I, ATX-II), in Red Delicious apples under simulated retail and post-harvest conditions. Three <em>Alternaria tenuissima</em> strains (isolates 02, 31 and 36) were inoculated in apple fruit at two sites separately (core and exterior) and incubated at two temperatures (25 °C and 4 °C) for 1 and 9 months. Mycotoxin production was quantified using LC-MS/MS, revealing significant variability across strains and conditions. Isolates 02 and 36 exhibited significant temperature and site-dependent variability in mycotoxin production. Higher levels of AOH, AME, ALT, and ATX-I were produced at 25 °C and in the core. Long-term cold storage delayed fungal growth but did not prevent mycotoxin accumulation, raising concerns about the safety of processed apple products. These findings highlight the need for stricter monitoring of mycotoxins during post-harvest storage to mitigate health risks. The findings provide insights into their toxigenic capacity <em>in vivo</em> and highlight potential risks for food safety.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"439 ","pages":"Article 111272"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016816052500217X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Apple fruit is widely consumed worldwide, but fungal contamination in the postharvest stage presents a significant food safety concern. This study evaluates the production and accumulation of Alternaria mycotoxins, including alternariol (AOH), alternariol monomethyl-ether (AME), and the modified forms (AOH-3-S, AME-3-S, AOH-3-G, AME-3-G), altenuene (ALT), tenuazonic acid (TeA), tentoxin (TEN), altertoxin I and II (ATXI, ATX-II), in Red Delicious apples under simulated retail and post-harvest conditions. Three Alternaria tenuissima strains (isolates 02, 31 and 36) were inoculated in apple fruit at two sites separately (core and exterior) and incubated at two temperatures (25 °C and 4 °C) for 1 and 9 months. Mycotoxin production was quantified using LC-MS/MS, revealing significant variability across strains and conditions. Isolates 02 and 36 exhibited significant temperature and site-dependent variability in mycotoxin production. Higher levels of AOH, AME, ALT, and ATX-I were produced at 25 °C and in the core. Long-term cold storage delayed fungal growth but did not prevent mycotoxin accumulation, raising concerns about the safety of processed apple products. These findings highlight the need for stricter monitoring of mycotoxins during post-harvest storage to mitigate health risks. The findings provide insights into their toxigenic capacity in vivo and highlight potential risks for food safety.
期刊介绍:
The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.