Juan Luis Gómez-González , Effie Marcoulaki , Alexis Cantizano , Myrto Konstantinidou , Raquel Caro , Mario Castro
{"title":"Simulated fire observables as indicators for optimizing wireless sensor networks in wildfire risk monitoring","authors":"Juan Luis Gómez-González , Effie Marcoulaki , Alexis Cantizano , Myrto Konstantinidou , Raquel Caro , Mario Castro","doi":"10.1016/j.ecolind.2025.113509","DOIUrl":null,"url":null,"abstract":"<div><div>Uncontrolled wildfires cause significant damage and economic costs. Wireless Sensor Networks (WSNs) can mitigate these impacts by detecting fires early across extensive wildland areas. This work presents a simulation-driven optimization framework for localizing WSNs to enhance early wildfire detection and minimize potential damage. Formulated as a Multi-Objective Optimization Problem (MOOP) and solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), the method utilizes dynamic wildfire simulations and considers stochastic variables such as ignition likelihood and weather conditions. The methodology is general and independent of the simulation model or the studied region. The framework supports decision-making under uncertainty, ensuring the designed networks remain effective across varying conditions. A practical case study with validated fire behaviour demonstrates the robustness of the approach to identify the most efficient and cost-effective sensor locations. Results show significantly better performance compared to uniform sensor grids and WSNs designed for fixed-weather scenarios, highlighting the benefits of this approach for wildfire management.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"175 ","pages":"Article 113509"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X2500439X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Uncontrolled wildfires cause significant damage and economic costs. Wireless Sensor Networks (WSNs) can mitigate these impacts by detecting fires early across extensive wildland areas. This work presents a simulation-driven optimization framework for localizing WSNs to enhance early wildfire detection and minimize potential damage. Formulated as a Multi-Objective Optimization Problem (MOOP) and solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), the method utilizes dynamic wildfire simulations and considers stochastic variables such as ignition likelihood and weather conditions. The methodology is general and independent of the simulation model or the studied region. The framework supports decision-making under uncertainty, ensuring the designed networks remain effective across varying conditions. A practical case study with validated fire behaviour demonstrates the robustness of the approach to identify the most efficient and cost-effective sensor locations. Results show significantly better performance compared to uniform sensor grids and WSNs designed for fixed-weather scenarios, highlighting the benefits of this approach for wildfire management.
期刊介绍:
The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published.
• All aspects of ecological and environmental indicators and indices.
• New indicators, and new approaches and methods for indicator development, testing and use.
• Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources.
• Analysis and research of resource, system- and scale-specific indicators.
• Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs.
• How research indicators can be transformed into direct application for management purposes.
• Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators.
• Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.