Peng Wang , Rui Xiong , Weixiang Shen , Fengchun Sun
{"title":"Aging-induced, rate-independent Lithium plating: A complete mechanism analysis throughout the battery lifecycle","authors":"Peng Wang , Rui Xiong , Weixiang Shen , Fengchun Sun","doi":"10.1016/j.apenergy.2025.126094","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion battery aging poses a critical challenge, and understanding its mechanisms is key to extending battery life. While most aging side reactions are largely influenced by current rate (C-rate), some reactions, such as aging-induced lithium plating, occur independently of C-rate and play a major role in battery aging. A rate-independent lithium plating has a profound impact on battery performance and longevity. To investigate this phenomenon, we conducted systematic aging tests including battery disassembly, scanning electron microscope imaging, and half-cell testing. Thermodynamic analysis revealed that aging is accompanied by the formation of a distinct open circuit voltage (OCV) plateau, which contracts over time as lithium deposition on the anode initially increases and then stabilizes. Additionally, we introduced an innovative phase-based scaling technique to segment and scale the anode's over-discharge potential curve. This technique enabled precise alignment of the electrode open circuit potential with battery OCV throughout its lifecycle, achieving a root mean square error below 10 mV under both plating and non-plating conditions. Furthermore, a strong correlation was identified between lithium plating and capacity degradation inflection point, underscoring its critical role in accelerating performance degradation. These findings provide valuable insights into battery aging mechanisms and contribute to developing more effective strategies for optimizing battery performance and extending battery life.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"393 ","pages":"Article 126094"},"PeriodicalIF":10.1000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925008244","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-ion battery aging poses a critical challenge, and understanding its mechanisms is key to extending battery life. While most aging side reactions are largely influenced by current rate (C-rate), some reactions, such as aging-induced lithium plating, occur independently of C-rate and play a major role in battery aging. A rate-independent lithium plating has a profound impact on battery performance and longevity. To investigate this phenomenon, we conducted systematic aging tests including battery disassembly, scanning electron microscope imaging, and half-cell testing. Thermodynamic analysis revealed that aging is accompanied by the formation of a distinct open circuit voltage (OCV) plateau, which contracts over time as lithium deposition on the anode initially increases and then stabilizes. Additionally, we introduced an innovative phase-based scaling technique to segment and scale the anode's over-discharge potential curve. This technique enabled precise alignment of the electrode open circuit potential with battery OCV throughout its lifecycle, achieving a root mean square error below 10 mV under both plating and non-plating conditions. Furthermore, a strong correlation was identified between lithium plating and capacity degradation inflection point, underscoring its critical role in accelerating performance degradation. These findings provide valuable insights into battery aging mechanisms and contribute to developing more effective strategies for optimizing battery performance and extending battery life.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.