Erik Abbá, Dragos Axinte, Alistair Speidel, Zhirong Liao
{"title":"Deep-eutectic solvents enable tunable control of the micro-mechanical response through electrical actuation","authors":"Erik Abbá, Dragos Axinte, Alistair Speidel, Zhirong Liao","doi":"10.1016/j.mattod.2025.03.022","DOIUrl":null,"url":null,"abstract":"<div><div>Active interactions at liquid-to-solid interfaces can significantly impact the mechanical response of solid substrates. Traditionally, these have been regulated through surface-active media, such as ionic liquids, used in a static (time-invariant) manner that relies on chemical tuning to induce specific mechanochemical responses. This study introduces a novel and sustainable class of Deep Eutectic Solvents (DESs) to demonstrate a dynamic (time-variant) mechanochemical effect, achieved through molecular electro-actuation at the fluid-to-solid interface. The dynamic micro-mechanochemical effect was demonstrated using a DES mixture consisting of citric acid and choline chloride in a 1:1 M ratio, applied to a nickel single-crystal micro-cantilever substrate. The findings show how the DES coating alone induced compressive surface stress, resulting in a 34 % increase in principal stress. More notably, when the substrate surface was polarized with a ±5 V potential, electro-actuation amplified this mechanochemical effect by up to 51 %, confirming a clear dynamic response. Further validation was presented at the macroscale in a polycrystalline material setting, where a similar response was observed. These findings give insight into the possible development of smart surfaces coated with DESs, where a single chemical system can dynamically alter materials’ mechanical response through simple electro-actuation, offering versatile applications across micro and macro scales.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"86 ","pages":"Pages 183-201"},"PeriodicalIF":21.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702125001440","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Active interactions at liquid-to-solid interfaces can significantly impact the mechanical response of solid substrates. Traditionally, these have been regulated through surface-active media, such as ionic liquids, used in a static (time-invariant) manner that relies on chemical tuning to induce specific mechanochemical responses. This study introduces a novel and sustainable class of Deep Eutectic Solvents (DESs) to demonstrate a dynamic (time-variant) mechanochemical effect, achieved through molecular electro-actuation at the fluid-to-solid interface. The dynamic micro-mechanochemical effect was demonstrated using a DES mixture consisting of citric acid and choline chloride in a 1:1 M ratio, applied to a nickel single-crystal micro-cantilever substrate. The findings show how the DES coating alone induced compressive surface stress, resulting in a 34 % increase in principal stress. More notably, when the substrate surface was polarized with a ±5 V potential, electro-actuation amplified this mechanochemical effect by up to 51 %, confirming a clear dynamic response. Further validation was presented at the macroscale in a polycrystalline material setting, where a similar response was observed. These findings give insight into the possible development of smart surfaces coated with DESs, where a single chemical system can dynamically alter materials’ mechanical response through simple electro-actuation, offering versatile applications across micro and macro scales.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.