{"title":"Cost-effective optimisation and validation of the VISAGE enhanced tool assay on the Illumina NovaSeq 6000 platform","authors":"Lauren Verstraeten , Kristina Fokias , Gitte Saerens , Bram Bekaert","doi":"10.1016/j.fsigen.2025.103299","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous forensic age prediction models based on DNA methylation markers have been developed, each differing in the number of predictive markers, statistical method, biomatrix, and sequencing platform used. This variability highlighted the need for more uniformity in the development of epigenetic clocks. To partially address this need, the VISAGE Consortium introduced the VISAGE enhanced tool assay, a multi-tissue assay that targets eight age-associated genes (<em>ELOVL2</em>, <em>EDARADD</em>, <em>ASPA</em>, <em>FHL2</em>, <em>MIR29B2CHG</em>, <em>KLF14</em>, <em>TRIM59</em>, and <em>PDE4C</em>). So far, three models were built using this assay for age prediction in blood, buccal cells, and bones, based on Illumina MiSeq sequencing data with the v3 reagent kit (2 × 300 bp). Unfortunately, the existing models are neither publicly accessible nor permitted for use in forensic casework. To address this limitation, we developed our own age estimation model utilising the VISAGE enhanced tool assay in combination with the Illumina NovaSeq 6000 platform and the v1.5 reagent kit (2 × 150 bp). By employing the same assay, we streamlined the workflow and enhanced uniformity, as there was no need to identify additional age-associated genes. By adjusting the assay’s primer concentrations, we achieved sufficient read depths to accurately determine methylation levels, even for longer amplicons with partial sequencing strand coverage. This modified assay was used to develop an age estimation model in blood (n = 98) with a mean absolute error (MAE) of 3.22 years and root mean squared error (RMSE) of 3.77 years in the test set (n = 30). Overall, this study demonstrated that by adjusting primer concentrations, equal age estimation performances can be achieved with the added benefit of drastically reduced costs and turn-around-time by using a 2 × 150 bp sequencing strategy. Additionally, this study was the first to independently validate the VISAGE enhanced tool assay on a different sequencing platform, exploring its potential for broader applications and partially answering the need for more uniformity.</div></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":"78 ","pages":"Article 103299"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497325000791","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous forensic age prediction models based on DNA methylation markers have been developed, each differing in the number of predictive markers, statistical method, biomatrix, and sequencing platform used. This variability highlighted the need for more uniformity in the development of epigenetic clocks. To partially address this need, the VISAGE Consortium introduced the VISAGE enhanced tool assay, a multi-tissue assay that targets eight age-associated genes (ELOVL2, EDARADD, ASPA, FHL2, MIR29B2CHG, KLF14, TRIM59, and PDE4C). So far, three models were built using this assay for age prediction in blood, buccal cells, and bones, based on Illumina MiSeq sequencing data with the v3 reagent kit (2 × 300 bp). Unfortunately, the existing models are neither publicly accessible nor permitted for use in forensic casework. To address this limitation, we developed our own age estimation model utilising the VISAGE enhanced tool assay in combination with the Illumina NovaSeq 6000 platform and the v1.5 reagent kit (2 × 150 bp). By employing the same assay, we streamlined the workflow and enhanced uniformity, as there was no need to identify additional age-associated genes. By adjusting the assay’s primer concentrations, we achieved sufficient read depths to accurately determine methylation levels, even for longer amplicons with partial sequencing strand coverage. This modified assay was used to develop an age estimation model in blood (n = 98) with a mean absolute error (MAE) of 3.22 years and root mean squared error (RMSE) of 3.77 years in the test set (n = 30). Overall, this study demonstrated that by adjusting primer concentrations, equal age estimation performances can be achieved with the added benefit of drastically reduced costs and turn-around-time by using a 2 × 150 bp sequencing strategy. Additionally, this study was the first to independently validate the VISAGE enhanced tool assay on a different sequencing platform, exploring its potential for broader applications and partially answering the need for more uniformity.
期刊介绍:
Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts.
The scope of the journal includes:
Forensic applications of human polymorphism.
Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies.
Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms.
Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications.
Non-human DNA polymorphisms for crime scene investigation.
Population genetics of human polymorphisms of forensic interest.
Population data, especially from DNA polymorphisms of interest for the solution of forensic problems.
DNA typing methodologies and strategies.
Biostatistical methods in forensic genetics.
Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches.
Standards in forensic genetics.
Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards.
Quality control.
Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies.
Criminal DNA databases.
Technical, legal and statistical issues.
General ethical and legal issues related to forensic genetics.