Interfacial engineering and rapid thermal crystallization of Sb2S3 photoanodes for enhanced photoelectrochemical performances

IF 13.1 1区 化学 Q1 Energy
Runfa Tan , Seo Yeong Hong , Yoo Jae Jeong , Seong Sik Shin , In Sun Cho
{"title":"Interfacial engineering and rapid thermal crystallization of Sb2S3 photoanodes for enhanced photoelectrochemical performances","authors":"Runfa Tan ,&nbsp;Seo Yeong Hong ,&nbsp;Yoo Jae Jeong ,&nbsp;Seong Sik Shin ,&nbsp;In Sun Cho","doi":"10.1016/j.jechem.2025.04.044","DOIUrl":null,"url":null,"abstract":"<div><div>Antimony sulfide (Sb<sub>2</sub>S<sub>3</sub>) is a promising material for photoelectrochemical (PEC) devices that generate green hydrogen from sunlight and water. In this study, we present a synthesis of high-performance Sb<sub>2</sub>S<sub>3</sub> photoanodes via an interface-engineered hydrothermal growth followed by rapid thermal annealing (RTA). A TiO<sub>2</sub> interfacial layer plays a crucial role in ensuring homogeneous precursor deposition, enhancing light absorption, and forming efficient heterojunctions with Sb<sub>2</sub>S<sub>3</sub>, thereby significantly improving charge separation and transport. RTA further improves crystallinity and interfacial contact, resulting in dense and uniform Sb<sub>2</sub>S<sub>3</sub> films with enlarged grains and fewer defects. The optimized Sb<sub>2</sub>S<sub>3</sub> photoanode achieves a photocurrent density of 2.51 mA/cm<sup>2</sup> at 1.23 V vs. the reversible hydrogen electrode (RHE), one of the highest reported for Sb<sub>2</sub>S<sub>3</sub> without additional catalysts or passivation layers. To overcome the limitations of oxygen evolution reaction (OER), we employ the iodide oxidation reaction (IOR) as an alternative, significantly lowering the overpotential and improving charge transfer kinetics. Consequently, it produces a record photocurrent density of 8.9 mA/cm<sup>2</sup> at 0.54 V vs. RHE. This work highlights the synergy between TiO<sub>2</sub> interfacial engineering, RTA-induced crystallization, and IOR-driven oxidation, offering a promising pathway for efficient and scalable PEC hydrogen production.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"108 ","pages":"Pages 417-426"},"PeriodicalIF":13.1000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625003596","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Antimony sulfide (Sb2S3) is a promising material for photoelectrochemical (PEC) devices that generate green hydrogen from sunlight and water. In this study, we present a synthesis of high-performance Sb2S3 photoanodes via an interface-engineered hydrothermal growth followed by rapid thermal annealing (RTA). A TiO2 interfacial layer plays a crucial role in ensuring homogeneous precursor deposition, enhancing light absorption, and forming efficient heterojunctions with Sb2S3, thereby significantly improving charge separation and transport. RTA further improves crystallinity and interfacial contact, resulting in dense and uniform Sb2S3 films with enlarged grains and fewer defects. The optimized Sb2S3 photoanode achieves a photocurrent density of 2.51 mA/cm2 at 1.23 V vs. the reversible hydrogen electrode (RHE), one of the highest reported for Sb2S3 without additional catalysts or passivation layers. To overcome the limitations of oxygen evolution reaction (OER), we employ the iodide oxidation reaction (IOR) as an alternative, significantly lowering the overpotential and improving charge transfer kinetics. Consequently, it produces a record photocurrent density of 8.9 mA/cm2 at 0.54 V vs. RHE. This work highlights the synergy between TiO2 interfacial engineering, RTA-induced crystallization, and IOR-driven oxidation, offering a promising pathway for efficient and scalable PEC hydrogen production.
Sb2S3光阳极的界面工程与快速热结晶研究
硫化锑(Sb2S3)是一种很有前途的材料,用于光电化学(PEC)装置,从阳光和水产生绿色氢。在这项研究中,我们通过界面工程水热生长和快速热退火(RTA)合成了高性能的Sb2S3光阳极。TiO2界面层在保证前驱体沉积均匀,增强光吸收,与Sb2S3形成高效异质结,从而显著改善电荷分离和输运方面起着至关重要的作用。RTA进一步改善了结晶度和界面接触,使Sb2S3薄膜致密均匀,晶粒增大,缺陷减少。与可逆氢电极(RHE)相比,优化后的Sb2S3光阳极在1.23 V下实现了2.51 mA/cm2的光电流密度,这是Sb2S3在没有额外催化剂或钝化层的情况下报道的最高光电流密度之一。为了克服析氧反应(OER)的局限性,我们采用碘化物氧化反应(IOR)作为替代反应,显著降低了过电位,改善了电荷转移动力学。因此,在0.54 V时,与RHE相比,它产生了8.9 mA/cm2的光电流密度。这项工作强调了TiO2界面工程、rta诱导结晶和iir驱动氧化之间的协同作用,为高效、可扩展的PEC制氢提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信