Runfa Tan , Seo Yeong Hong , Yoo Jae Jeong , Seong Sik Shin , In Sun Cho
{"title":"Interfacial engineering and rapid thermal crystallization of Sb2S3 photoanodes for enhanced photoelectrochemical performances","authors":"Runfa Tan , Seo Yeong Hong , Yoo Jae Jeong , Seong Sik Shin , In Sun Cho","doi":"10.1016/j.jechem.2025.04.044","DOIUrl":null,"url":null,"abstract":"<div><div>Antimony sulfide (Sb<sub>2</sub>S<sub>3</sub>) is a promising material for photoelectrochemical (PEC) devices that generate green hydrogen from sunlight and water. In this study, we present a synthesis of high-performance Sb<sub>2</sub>S<sub>3</sub> photoanodes via an interface-engineered hydrothermal growth followed by rapid thermal annealing (RTA). A TiO<sub>2</sub> interfacial layer plays a crucial role in ensuring homogeneous precursor deposition, enhancing light absorption, and forming efficient heterojunctions with Sb<sub>2</sub>S<sub>3</sub>, thereby significantly improving charge separation and transport. RTA further improves crystallinity and interfacial contact, resulting in dense and uniform Sb<sub>2</sub>S<sub>3</sub> films with enlarged grains and fewer defects. The optimized Sb<sub>2</sub>S<sub>3</sub> photoanode achieves a photocurrent density of 2.51 mA/cm<sup>2</sup> at 1.23 V vs. the reversible hydrogen electrode (RHE), one of the highest reported for Sb<sub>2</sub>S<sub>3</sub> without additional catalysts or passivation layers. To overcome the limitations of oxygen evolution reaction (OER), we employ the iodide oxidation reaction (IOR) as an alternative, significantly lowering the overpotential and improving charge transfer kinetics. Consequently, it produces a record photocurrent density of 8.9 mA/cm<sup>2</sup> at 0.54 V vs. RHE. This work highlights the synergy between TiO<sub>2</sub> interfacial engineering, RTA-induced crystallization, and IOR-driven oxidation, offering a promising pathway for efficient and scalable PEC hydrogen production.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"108 ","pages":"Pages 417-426"},"PeriodicalIF":13.1000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625003596","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Antimony sulfide (Sb2S3) is a promising material for photoelectrochemical (PEC) devices that generate green hydrogen from sunlight and water. In this study, we present a synthesis of high-performance Sb2S3 photoanodes via an interface-engineered hydrothermal growth followed by rapid thermal annealing (RTA). A TiO2 interfacial layer plays a crucial role in ensuring homogeneous precursor deposition, enhancing light absorption, and forming efficient heterojunctions with Sb2S3, thereby significantly improving charge separation and transport. RTA further improves crystallinity and interfacial contact, resulting in dense and uniform Sb2S3 films with enlarged grains and fewer defects. The optimized Sb2S3 photoanode achieves a photocurrent density of 2.51 mA/cm2 at 1.23 V vs. the reversible hydrogen electrode (RHE), one of the highest reported for Sb2S3 without additional catalysts or passivation layers. To overcome the limitations of oxygen evolution reaction (OER), we employ the iodide oxidation reaction (IOR) as an alternative, significantly lowering the overpotential and improving charge transfer kinetics. Consequently, it produces a record photocurrent density of 8.9 mA/cm2 at 0.54 V vs. RHE. This work highlights the synergy between TiO2 interfacial engineering, RTA-induced crystallization, and IOR-driven oxidation, offering a promising pathway for efficient and scalable PEC hydrogen production.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy