Thermal performance optimization of nanoparticle-enhanced PCMs in a wavy trapezoidal cavity: a computational study

Q1 Chemical Engineering
Saddam Hocine Mellah , Mecieb Fatima Zohra , Aissa Abderrahmane , Obai Younis , Samir Laouedj , Kamel Guedri , Ali Alahmer
{"title":"Thermal performance optimization of nanoparticle-enhanced PCMs in a wavy trapezoidal cavity: a computational study","authors":"Saddam Hocine Mellah ,&nbsp;Mecieb Fatima Zohra ,&nbsp;Aissa Abderrahmane ,&nbsp;Obai Younis ,&nbsp;Samir Laouedj ,&nbsp;Kamel Guedri ,&nbsp;Ali Alahmer","doi":"10.1016/j.ijft.2025.101255","DOIUrl":null,"url":null,"abstract":"<div><div>Reducing the duration of the total melting process is a key challenge in thermal energy storage (TES) systems. This study numerically investigates the enhancement of TES thermal performance using a trapezoidal prism storage unit filled with nano-enhanced phase change material (NEPCM). The bottom wall (wave wall) is heated while the remaining walls are insulated, and its shape is modified while keeping the PCM volume constant. The study evaluates four TES configurations with different bottom wall geometries: Case 1 (sawtooth waves), Case 2 (triangular waves), Case 3 (sinusoidal waves), and Case 4 (square waves). The phase transition is modeled using the enthalpy-porosity method. The effects of bottom wall temperature (333 K and 343 K) and nanoparticle concentration (φ = 0–0.04) are also analyzed. The analysis examines temperature distributions and liquid fraction evolution across the four configurations under two different temperatures. The findings revealed that incorporating nanoparticles at a concentration of 4 vol% enhanced thermal conductivity during the melting process by 9.2 %. Increasing the bottom wall temperature to 343 K accelerated the melting process by 75 %. Among the tested designs, the TES system with a square-wave bottom wall (Case 4) achieves the highest efficiency, reducing melting time by 18 % compared to the sinusoidal-wave configuration (Case 3).</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"27 ","pages":"Article 101255"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725002022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing the duration of the total melting process is a key challenge in thermal energy storage (TES) systems. This study numerically investigates the enhancement of TES thermal performance using a trapezoidal prism storage unit filled with nano-enhanced phase change material (NEPCM). The bottom wall (wave wall) is heated while the remaining walls are insulated, and its shape is modified while keeping the PCM volume constant. The study evaluates four TES configurations with different bottom wall geometries: Case 1 (sawtooth waves), Case 2 (triangular waves), Case 3 (sinusoidal waves), and Case 4 (square waves). The phase transition is modeled using the enthalpy-porosity method. The effects of bottom wall temperature (333 K and 343 K) and nanoparticle concentration (φ = 0–0.04) are also analyzed. The analysis examines temperature distributions and liquid fraction evolution across the four configurations under two different temperatures. The findings revealed that incorporating nanoparticles at a concentration of 4 vol% enhanced thermal conductivity during the melting process by 9.2 %. Increasing the bottom wall temperature to 343 K accelerated the melting process by 75 %. Among the tested designs, the TES system with a square-wave bottom wall (Case 4) achieves the highest efficiency, reducing melting time by 18 % compared to the sinusoidal-wave configuration (Case 3).
波浪形梯形腔中纳米粒子增强PCMs的热性能优化:计算研究
减少总熔化过程的持续时间是热储能(TES)系统的一个关键挑战。本研究用数值方法研究了填充纳米增强相变材料(NEPCM)的梯形棱柱存储单元对TES热性能的增强。底壁(波壁)被加热,而其余的壁是绝缘的,它的形状被修改,同时保持PCM体积恒定。该研究评估了四种不同底壁几何形状的TES配置:情形1(锯齿波)、情形2(三角波)、情形3(正弦波)和情形4(方波)。采用焓孔法对相变进行了建模。分析了底壁温度(333 K和343 K)和纳米颗粒浓度(φ = 0 ~ 0.04)对纳米颗粒的影响。分析了在两种不同温度下四种结构的温度分布和液体组分演化。研究结果表明,加入浓度为4 vol%的纳米颗粒可使熔化过程中的导热系数提高9.2%。将底壁温度提高到343 K时,熔化速度加快了75%。在测试的设计中,采用方波底壁(案例4)的TES系统效率最高,与正弦波配置(案例3)相比,熔化时间缩短了18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信