{"title":"An Alternating Optimization Scheme for Binary Sketches","authors":"Erik Thordsen, Erich Schubert","doi":"10.1016/j.is.2025.102563","DOIUrl":null,"url":null,"abstract":"<div><div>Searching for similar objects in intrinsically high-dimensional data sets is a challenging task. The use of compact sketches has been proposed for faster similarity search using linear scans. Binary sketches are one such approach to find a good mapping from the original data space to bit strings of a fixed length. These bit strings can be compared efficiently using only few XOR and bit count operations, replacing costly similarity computations with an inexpensive approximation. We propose a new scheme to initialize and improve binary sketches for similarity search in Euclidean spaces. Our optimization iteratively improves the quality of the sketches with a form of orthogonalization. We provide empirical evidence that the quality of the sketches has a peak beyond which it is not correlated to neither bit independence nor bit balance, which contradicts a previous hypothesis in the literature. Regularization in the form of noise added to the training data can turn the peak into a plateau and applying the optimization in a stochastic fashion, i.e., training on smaller subsets of the data, allows for rapid initialization. We provide a loss function that allows to approximate the same objective using neural network frameworks such as PyTorch, elevating the approach to GPU-based training.</div></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"133 ","pages":"Article 102563"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030643792500047X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Searching for similar objects in intrinsically high-dimensional data sets is a challenging task. The use of compact sketches has been proposed for faster similarity search using linear scans. Binary sketches are one such approach to find a good mapping from the original data space to bit strings of a fixed length. These bit strings can be compared efficiently using only few XOR and bit count operations, replacing costly similarity computations with an inexpensive approximation. We propose a new scheme to initialize and improve binary sketches for similarity search in Euclidean spaces. Our optimization iteratively improves the quality of the sketches with a form of orthogonalization. We provide empirical evidence that the quality of the sketches has a peak beyond which it is not correlated to neither bit independence nor bit balance, which contradicts a previous hypothesis in the literature. Regularization in the form of noise added to the training data can turn the peak into a plateau and applying the optimization in a stochastic fashion, i.e., training on smaller subsets of the data, allows for rapid initialization. We provide a loss function that allows to approximate the same objective using neural network frameworks such as PyTorch, elevating the approach to GPU-based training.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.