Tao Ding , Meiying Song , Yongshi Wu, Zhu Li, Shanshan Zhang, Xiang Fan
{"title":"Schisandrin B ameliorates Alzheimer's disease by suppressing neuronal ferroptosis and ensuing microglia M1 polarization","authors":"Tao Ding , Meiying Song , Yongshi Wu, Zhu Li, Shanshan Zhang, Xiang Fan","doi":"10.1016/j.phymed.2025.156780","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neuronal damage, with poor prognosis and limited therapeutic options. Inhibition of neuronal ferroptosis has shown promise as a potential treatment for AD. Schisandrin B (Sch B), a major active component of <em>Schisandra chinensis</em>, exhibits potential neuroprotective effects. However, whether Sch B inhibits neuronal ferroptosis remains unclear.</div></div><div><h3>Purpose</h3><div>To investigate the mechanisms underlying the effects of Sch B on the GSK3β/Nrf2/GPX4 and FSP1 signaling pathways, which are the suppression of neuronal ferroptosis and the potential therapeutic intervention in AD.</div></div><div><h3>Methods</h3><div>We employed the 3 × Tg mouse model <em>in vivo</em>, and utilized the erastin-induced ferroptosis model in SH-SY5Y/APP695swe cells <em>in vitro</em>. Nissl staining was conducted to facilitate histopathological assessment. Assessment of neuronal ferroptosis was performed utilizing a lipid peroxidation and ferroptosis marker assay kit. Furthermore, bioinformatic analysis was executed with the application of the GEO database. Immunofluorescence and Western blot analyses were performed to quantify protein expression levels within the cellular context. ELISA was utilized to determine cytokine concentrations within the supernatant of cell cultures. RT-PCR was executed to evaluate mRNA expression levels.</div></div><div><h3>Results</h3><div>Sch B suppresses the activation of GSK3β, modulating the Nrf2/GPX4 signaling pathway and consequently inhibiting ferroptosis in neurons, which results in amelioration of cognitive impairment and pathological damage in 3 × Tg mice. Sch B also inhibits GSK3β activation, thereby modulating the Nrf2/GPX4 signaling pathway to prevent erastin-induced ferroptosis in SH-SY5Y695swe cells <em>in vitro</em>. Furthermore, Sch B modulates FSP1, enhancing its synergistic interaction with the GSK3β/Nrf2/GPX4 pathway to suppress neuronal ferroptosis. Sch B can also inhibit TNF-α release from neurons undergoing ferroptosis, thus impeding the activation of M1-type microglia, suggesting a multifaceted neuroprotective strategy against neuroinflammatory processes.</div></div><div><h3>Conclusion</h3><div>Sch B modulates the GSK3β/Nrf2/GPX4 pathway in conjunction with FSP1 to inhibit neuronal ferroptosis and the subsequent microglial M1 polarization mediated by neuronal ferroptosis, thereby improving cognitive impairment and pathological damage in AD.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"142 ","pages":"Article 156780"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711325004180","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neuronal damage, with poor prognosis and limited therapeutic options. Inhibition of neuronal ferroptosis has shown promise as a potential treatment for AD. Schisandrin B (Sch B), a major active component of Schisandra chinensis, exhibits potential neuroprotective effects. However, whether Sch B inhibits neuronal ferroptosis remains unclear.
Purpose
To investigate the mechanisms underlying the effects of Sch B on the GSK3β/Nrf2/GPX4 and FSP1 signaling pathways, which are the suppression of neuronal ferroptosis and the potential therapeutic intervention in AD.
Methods
We employed the 3 × Tg mouse model in vivo, and utilized the erastin-induced ferroptosis model in SH-SY5Y/APP695swe cells in vitro. Nissl staining was conducted to facilitate histopathological assessment. Assessment of neuronal ferroptosis was performed utilizing a lipid peroxidation and ferroptosis marker assay kit. Furthermore, bioinformatic analysis was executed with the application of the GEO database. Immunofluorescence and Western blot analyses were performed to quantify protein expression levels within the cellular context. ELISA was utilized to determine cytokine concentrations within the supernatant of cell cultures. RT-PCR was executed to evaluate mRNA expression levels.
Results
Sch B suppresses the activation of GSK3β, modulating the Nrf2/GPX4 signaling pathway and consequently inhibiting ferroptosis in neurons, which results in amelioration of cognitive impairment and pathological damage in 3 × Tg mice. Sch B also inhibits GSK3β activation, thereby modulating the Nrf2/GPX4 signaling pathway to prevent erastin-induced ferroptosis in SH-SY5Y695swe cells in vitro. Furthermore, Sch B modulates FSP1, enhancing its synergistic interaction with the GSK3β/Nrf2/GPX4 pathway to suppress neuronal ferroptosis. Sch B can also inhibit TNF-α release from neurons undergoing ferroptosis, thus impeding the activation of M1-type microglia, suggesting a multifaceted neuroprotective strategy against neuroinflammatory processes.
Conclusion
Sch B modulates the GSK3β/Nrf2/GPX4 pathway in conjunction with FSP1 to inhibit neuronal ferroptosis and the subsequent microglial M1 polarization mediated by neuronal ferroptosis, thereby improving cognitive impairment and pathological damage in AD.
期刊介绍:
Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.