Yu Liao , Chuanwei Li , Luyao Cheng , Yiwei Wang , Hao Zhang , Yisi Song , Zhenhua Ye , Jianfeng Gu
{"title":"Achieving balanced strength and ductility in a Fe64(CoCrNi)36 ferrous medium-entropy alloy via W addition","authors":"Yu Liao , Chuanwei Li , Luyao Cheng , Yiwei Wang , Hao Zhang , Yisi Song , Zhenhua Ye , Jianfeng Gu","doi":"10.1016/j.matdes.2025.114089","DOIUrl":null,"url":null,"abstract":"<div><div>The relatively low strength of ferrous medium-entropy alloys (Fe-MEAs) at room temperature has limited their widespread structural applications. In this study, a balanced strength and ductility were achieved in non-equiatomic [Fe<sub>64</sub>(CoCrNi)<sub>36</sub>]<sub>100−x</sub>W<sub>x</sub> (x = 0, 1, 2.5, and 4, at.%) Fe-MEAs via refractory tungsten (W) alloying and a single-step hot-rolling process. Increasing W content reduces the fraction of the body-centered cubic phase while promoting the formation of W-rich μ and minor Laves phases. The 4W alloy exhibits a yield strength of 810 MPa, an ultimate tensile strength of 891 MPa, and an elongation-to-failure of 26.3%. The improved yield strength is attributed to the combined effects of solid solution strengthening, grain boundary strengthening, dislocation strengthening, and precipitation strengthening. Detailed analysis revealed that the ductile face-centered cubic matrix effectively suppresses the propagation of microcracks originating from the hard and brittle precipitates. Furthermore, dislocation-precipitate/grain boundary interactions, nanoscale deformation twins, and deformation-induced martensitic transformation collectively improve the work-hardening capacity. These findings offer valuable insights into the design and development of cost-effective, high-performance Fe-MEAs for advanced structural applications.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"254 ","pages":"Article 114089"},"PeriodicalIF":7.6000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026412752500509X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The relatively low strength of ferrous medium-entropy alloys (Fe-MEAs) at room temperature has limited their widespread structural applications. In this study, a balanced strength and ductility were achieved in non-equiatomic [Fe64(CoCrNi)36]100−xWx (x = 0, 1, 2.5, and 4, at.%) Fe-MEAs via refractory tungsten (W) alloying and a single-step hot-rolling process. Increasing W content reduces the fraction of the body-centered cubic phase while promoting the formation of W-rich μ and minor Laves phases. The 4W alloy exhibits a yield strength of 810 MPa, an ultimate tensile strength of 891 MPa, and an elongation-to-failure of 26.3%. The improved yield strength is attributed to the combined effects of solid solution strengthening, grain boundary strengthening, dislocation strengthening, and precipitation strengthening. Detailed analysis revealed that the ductile face-centered cubic matrix effectively suppresses the propagation of microcracks originating from the hard and brittle precipitates. Furthermore, dislocation-precipitate/grain boundary interactions, nanoscale deformation twins, and deformation-induced martensitic transformation collectively improve the work-hardening capacity. These findings offer valuable insights into the design and development of cost-effective, high-performance Fe-MEAs for advanced structural applications.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.