Artificial intelligence in chromatography: Greenness and performance evaluation of AI-predicted and in-lab optimized HPLC methods for simultaneous separation of amlodipine, hydrochlorothiazide, and candesartan

IF 4.1 Q1 CHEMISTRY, ANALYTICAL
Hayam Mahmoud Lotfy , Nevin Erk , Asena Ayse Genc , Reem Hasan Obaydo , Gizem Tiris
{"title":"Artificial intelligence in chromatography: Greenness and performance evaluation of AI-predicted and in-lab optimized HPLC methods for simultaneous separation of amlodipine, hydrochlorothiazide, and candesartan","authors":"Hayam Mahmoud Lotfy ,&nbsp;Nevin Erk ,&nbsp;Asena Ayse Genc ,&nbsp;Reem Hasan Obaydo ,&nbsp;Gizem Tiris","doi":"10.1016/j.talo.2025.100473","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial Intelligence (AI) is revolutionizing analytical chemistry by promising rapid method development, yet its real-world efficacy remains untested in complex pharmaceutical separations. This study leverages AI to design an HPLC method for Amlodipine (AMD), Hydrochlorothiazide (HYD), and Candesartan (CND), comparing it with an experimentally optimized approach to uncover practical benefits and limitations. Our findings reveal AI’s potential to accelerate innovation while highlighting the critical role of human expertise. The In-Lab optimized HPLC method utilized an Xselect CSH Phenyl Hexyl® (2.5 µm, 4.6 × 150 mm) column with a mobile phase of acetonitrile:water (0.1 % trifluoroacetic acid) (70:30, v/v), a flow rate of 1.3 mL/min, and UV detection at 250 nm. It achieved rapid elution with retention times of AMD = 0.95 min, HYD = 1.36 min, and CND = 2.82 min. The AI-generated method used a C18 column (5 µm, 150 mm × 4.6 mm), gradient elution with phosphate buffer (pH 3.0) and acetonitrile, a flow rate of 1.0 mL/min, and detection at 240 nm, resulting in longer retention times: AMD = 7.12 min, HYD = 3.98 min, and CND = 12.12 min. Linearity ranges were AMD (25.0–250.0 µg/mL), HYD (31.2–287.0µg/mL), and CND (40.0–340.0µg/mL) for the In-Lab method, and AMD (30.0–250.0µg/mL), HYD (35.0–285.0µg/mL), and CND (50.0–340.0 µg/mL) for the AI-HPLC method. Both approaches were validated per ICH guidelines, confirming specificity, accuracy, and reliability. The obtained results were statistically compared with the reported ones using the F-test and Student’s t-test. In terms of sustainability, the In-Lab method outperformed the AI-based method according to MoGAPI, AGREE, and BAGI assessments, due to reduced solvent use, waste generation, and analysis time. This study underscores the necessity of human intervention to refine AI-generated methods, aligning them with both analytical efficiency and green chemistry goals. Improving AI tools to predict optimal HPLC conditions is essential for advancing sustainable and effective analytical practices.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"11 ","pages":"Article 100473"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266683192500075X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) is revolutionizing analytical chemistry by promising rapid method development, yet its real-world efficacy remains untested in complex pharmaceutical separations. This study leverages AI to design an HPLC method for Amlodipine (AMD), Hydrochlorothiazide (HYD), and Candesartan (CND), comparing it with an experimentally optimized approach to uncover practical benefits and limitations. Our findings reveal AI’s potential to accelerate innovation while highlighting the critical role of human expertise. The In-Lab optimized HPLC method utilized an Xselect CSH Phenyl Hexyl® (2.5 µm, 4.6 × 150 mm) column with a mobile phase of acetonitrile:water (0.1 % trifluoroacetic acid) (70:30, v/v), a flow rate of 1.3 mL/min, and UV detection at 250 nm. It achieved rapid elution with retention times of AMD = 0.95 min, HYD = 1.36 min, and CND = 2.82 min. The AI-generated method used a C18 column (5 µm, 150 mm × 4.6 mm), gradient elution with phosphate buffer (pH 3.0) and acetonitrile, a flow rate of 1.0 mL/min, and detection at 240 nm, resulting in longer retention times: AMD = 7.12 min, HYD = 3.98 min, and CND = 12.12 min. Linearity ranges were AMD (25.0–250.0 µg/mL), HYD (31.2–287.0µg/mL), and CND (40.0–340.0µg/mL) for the In-Lab method, and AMD (30.0–250.0µg/mL), HYD (35.0–285.0µg/mL), and CND (50.0–340.0 µg/mL) for the AI-HPLC method. Both approaches were validated per ICH guidelines, confirming specificity, accuracy, and reliability. The obtained results were statistically compared with the reported ones using the F-test and Student’s t-test. In terms of sustainability, the In-Lab method outperformed the AI-based method according to MoGAPI, AGREE, and BAGI assessments, due to reduced solvent use, waste generation, and analysis time. This study underscores the necessity of human intervention to refine AI-generated methods, aligning them with both analytical efficiency and green chemistry goals. Improving AI tools to predict optimal HPLC conditions is essential for advancing sustainable and effective analytical practices.
色谱中的人工智能:同时分离氨氯地平、氢氯噻嗪和坎地沙坦的人工智能预测和实验室优化HPLC方法的绿色度和性能评价
人工智能(AI)通过有希望的快速方法开发正在彻底改变分析化学,但其在复杂药物分离中的实际功效尚未得到检验。本研究利用人工智能设计了氨氯地平(AMD)、氢氯噻嗪(HYD)和坎地沙坦(CND)的高效液相色谱方法,并将其与实验优化的方法进行比较,以揭示实际的优点和局限性。我们的研究结果揭示了人工智能加速创新的潜力,同时强调了人类专业知识的关键作用。优化的高效液相色谱柱为Xselect CSH Phenyl Hexyl®(2.5µm, 4.6 × 150 mm),流动相为乙腈:水(0.1%三氟乙酸)(70:30,v/v),流速为1.3 mL/min,检测波长为250 nm。快速洗脱,保留时间AMD = 0.95 min, HYD = 1.36 min, CND = 2.82 min。人工智能生成的方法采用C18柱(5µm, 150 mm × 4.6 mm),磷酸缓冲液(pH 3.0)和乙腈梯度洗脱,流速1.0 mL/min, 240 nm检测,保留时间较长:AMD = 7.12 min, HYD = 3.98 min, CND = 12.12 min。In-Lab法的线性范围为AMD(25.0 ~ 250.0µg/mL)、HYD(31.2 ~ 287.0µg/mL)、CND(40.0 ~ 340.0µg/mL), AI-HPLC法的线性范围为AMD(30.0 ~ 250.0µg/mL)、HYD(35.0 ~ 285.0µg/mL)、CND(50.0 ~ 340.0µg/mL)。两种方法都按照ICH指南进行了验证,确认了特异性、准确性和可靠性。采用f检验和Student’s t检验,将所得结果与已报道的结果进行统计学比较。在可持续性方面,根据MoGAPI、AGREE和BAGI的评估,In- lab方法优于基于人工智能的方法,因为它减少了溶剂的使用、废物的产生和分析时间。这项研究强调了人工干预的必要性,以改进人工智能生成的方法,使其与分析效率和绿色化学目标保持一致。改进人工智能工具以预测最佳HPLC条件对于推进可持续和有效的分析实践至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Talanta Open
Talanta Open Chemistry-Analytical Chemistry
CiteScore
5.20
自引率
0.00%
发文量
86
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信