Qing Han , Yunhe Hong , Nicholas Birse , Brian Quinn , Philip McCarron , Christopher T. Elliott , Kasper A. Hettinga , Sara W. Erasmus
{"title":"Investigating the impact of particle size on the volatile and non-volatile metabolite variations of ginger powder","authors":"Qing Han , Yunhe Hong , Nicholas Birse , Brian Quinn , Philip McCarron , Christopher T. Elliott , Kasper A. Hettinga , Sara W. Erasmus","doi":"10.1016/j.lwt.2025.117920","DOIUrl":null,"url":null,"abstract":"<div><div>Particle size is a key morphological feature of ginger powder. It is known to influence the physicochemical properties of the product. Our previous research showed that particle size affects the spectral properties of ginger powder. That research raises an unanswered question, whether particle size variations may induce compositional changes, subsequently resulting in spectral variations. The impact of particle size on ginger powder's composition, particularly at the metabolomics level, remains unexplored. This study sought to explore the influence of particle size on the compositional variations, specifically metabolites, of ginger powder. Volatile and non-volatile metabolite analyses were performed using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The results revealed that particle size is not a decisive factor in the metabolite variations of ginger powder. The differential compounds identified using chemometrics revealed that geographical origin and processing methods, specifically drying, might have a more pronounced effect on the metabolite variations. Ultimately, this study filled the knowledge gap regarding the impact of particle size on ginger powder's metabolomics profiles, providing insights into the potential sources of variations leading to a better understanding of the compositional variation linked to powdered spice products and their production. These insights contribute to optimizing powdered spice production and enhance metabolomics-based food authentication.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":"225 ","pages":"Article 117920"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LWT - Food Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0023643825006048","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Particle size is a key morphological feature of ginger powder. It is known to influence the physicochemical properties of the product. Our previous research showed that particle size affects the spectral properties of ginger powder. That research raises an unanswered question, whether particle size variations may induce compositional changes, subsequently resulting in spectral variations. The impact of particle size on ginger powder's composition, particularly at the metabolomics level, remains unexplored. This study sought to explore the influence of particle size on the compositional variations, specifically metabolites, of ginger powder. Volatile and non-volatile metabolite analyses were performed using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The results revealed that particle size is not a decisive factor in the metabolite variations of ginger powder. The differential compounds identified using chemometrics revealed that geographical origin and processing methods, specifically drying, might have a more pronounced effect on the metabolite variations. Ultimately, this study filled the knowledge gap regarding the impact of particle size on ginger powder's metabolomics profiles, providing insights into the potential sources of variations leading to a better understanding of the compositional variation linked to powdered spice products and their production. These insights contribute to optimizing powdered spice production and enhance metabolomics-based food authentication.
期刊介绍:
LWT - Food Science and Technology is an international journal that publishes innovative papers in the fields of food chemistry, biochemistry, microbiology, technology and nutrition. The work described should be innovative either in the approach or in the methods used. The significance of the results either for the science community or for the food industry must also be specified. Contributions written in English are welcomed in the form of review articles, short reviews, research papers, and research notes. Papers featuring animal trials and cell cultures are outside the scope of the journal and will not be considered for publication.