Performance evaluation of Sentinel-2 imagery, agronomic and climatic data for sugarcane yield estimation

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Rafaella Pironato Amaro , Pierre Todoroff , Mathias Christina , Daniel Garbellini Duft , Ana Cláudia dos Santos Luciano
{"title":"Performance evaluation of Sentinel-2 imagery, agronomic and climatic data for sugarcane yield estimation","authors":"Rafaella Pironato Amaro ,&nbsp;Pierre Todoroff ,&nbsp;Mathias Christina ,&nbsp;Daniel Garbellini Duft ,&nbsp;Ana Cláudia dos Santos Luciano","doi":"10.1016/j.compag.2025.110522","DOIUrl":null,"url":null,"abstract":"<div><div>Given the importance of the sugarcane sector, machine learning techniques are being used as an important tool to improve yield estimation. This study aims to select the most relevant predictors from Sentinel-2 imagery, agronomic, and climatic data, using the Random Forest algorithm (RF), to estimate sugarcane yield before the harvest in a mill in the west of São Paulo state. We used radiometric bands (<span><math><msub><mtext>Red-edge</mtext><mn>1</mn></msub></math></span> to <span><math><msub><mtext>Red-edge</mtext><mn>3</mn></msub></math></span>, Red, NIR, <span><math><msub><mtext>SWIR</mtext><mn>1</mn></msub></math></span>, and <span><math><msub><mtext>SWIR</mtext><mn>2</mn></msub></math></span>) and vegetation indices from Sentinel-2 multispectral reflectance data (<span><math><msub><mtext>NDVIRE</mtext><mn>1</mn></msub></math></span> to <span><math><msub><mtext>NDVIRE</mtext><mn>3</mn></msub></math></span>, EVI, <span><math><msub><mtext>CIRE</mtext><mn>1</mn></msub></math></span> to <span><math><msub><mtext>CIRE</mtext><mn>3</mn></msub></math></span>, NDVI, <span><math><msub><mrow><mtext>ND</mtext><mtext>WI</mtext></mrow><mn>1</mn></msub></math></span>, <span><math><msub><mrow><mtext>ND</mtext><mtext>WI</mtext></mrow><mn>2</mn></msub></math></span>, SIWSI, NDMI, SAVI); agronomic data (soil type, number of harvests, variety, slope); climatic and agroclimatic data (temperature, precipitation, radiation, and crop water balance). We built four datasets to create yield estimation models for the mill: (i) the first dataset included all variables; (ii) in the second dataset, the strongly correlated variables from the dataset (i) were removed; (iii) the third dataset included the variables identified by feature selection within the 2nd dataset using RF algorithm’s impurity index (best model results); (iv) the fourth dataset, consisting of the 20 highest ranked variables from dataset 1 selected by SHapley Additive exPlanations (SHAP). The models showed R<sup>2</sup> values ranging from 0.58 to 0.70 with dataset 3, and the d-Willmott index ranged from 0.83 to 0.89. The most relevant variables for estimating sugarcane yield were the number of harvests, climatic data and vegetation indices that used Red-edge, near-infrared narrow, red and SWIR bands.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"237 ","pages":"Article 110522"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925006283","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Given the importance of the sugarcane sector, machine learning techniques are being used as an important tool to improve yield estimation. This study aims to select the most relevant predictors from Sentinel-2 imagery, agronomic, and climatic data, using the Random Forest algorithm (RF), to estimate sugarcane yield before the harvest in a mill in the west of São Paulo state. We used radiometric bands (Red-edge1 to Red-edge3, Red, NIR, SWIR1, and SWIR2) and vegetation indices from Sentinel-2 multispectral reflectance data (NDVIRE1 to NDVIRE3, EVI, CIRE1 to CIRE3, NDVI, NDWI1, NDWI2, SIWSI, NDMI, SAVI); agronomic data (soil type, number of harvests, variety, slope); climatic and agroclimatic data (temperature, precipitation, radiation, and crop water balance). We built four datasets to create yield estimation models for the mill: (i) the first dataset included all variables; (ii) in the second dataset, the strongly correlated variables from the dataset (i) were removed; (iii) the third dataset included the variables identified by feature selection within the 2nd dataset using RF algorithm’s impurity index (best model results); (iv) the fourth dataset, consisting of the 20 highest ranked variables from dataset 1 selected by SHapley Additive exPlanations (SHAP). The models showed R2 values ranging from 0.58 to 0.70 with dataset 3, and the d-Willmott index ranged from 0.83 to 0.89. The most relevant variables for estimating sugarcane yield were the number of harvests, climatic data and vegetation indices that used Red-edge, near-infrared narrow, red and SWIR bands.
基于Sentinel-2图像、农艺和气候数据的甘蔗产量估算性能评估
鉴于甘蔗行业的重要性,机器学习技术正被用作提高产量估算的重要工具。本研究旨在从Sentinel-2图像、农艺和气候数据中选择最相关的预测因子,使用随机森林算法(RF)估算圣保罗州西部一家工厂收获前的甘蔗产量。利用Sentinel-2多光谱反射率数据中的辐射波段(Red-edge1 ~ Red-edge3、Red、NIR、SWIR1和SWIR2)和植被指数(NDVIRE1 ~ NDVIRE3、EVI、CIRE1 ~ CIRE3、NDVI、NDWI1、NDWI2、SIWSI、NDMI、SAVI);农艺资料(土壤类型、收成数量、品种、坡度);气候和农业气候数据(温度、降水、辐射和作物水分平衡)。我们建立了四个数据集来创建工厂的产量估计模型:(i)第一个数据集包括所有变量;(ii)在第二个数据集中,从数据集(i)中删除强相关变量;(iii)第三个数据集包括使用RF算法的杂质指数在第二个数据集中通过特征选择识别的变量(最佳模型结果);(iv)第四个数据集,由SHapley加性解释(SHAP)从数据集1中选择的20个排名最高的变量组成。数据集3的R2值为0.58 ~ 0.70,d-Willmott指数为0.83 ~ 0.89。使用红边、近红外窄波段、红波段和SWIR波段的植被指数和气候数据是估算甘蔗产量最相关的变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信