Jielong Guo , Chak Fong Chong , Pedro Henriques Abreu , Chao Mao , Chan-Tong Lam , Benjamin K. Ng
{"title":"Enhancing the robustness of solar photovoltaic fault classification based on depthwise separable group equivariant CNNs","authors":"Jielong Guo , Chak Fong Chong , Pedro Henriques Abreu , Chao Mao , Chan-Tong Lam , Benjamin K. Ng","doi":"10.1016/j.aej.2025.04.063","DOIUrl":null,"url":null,"abstract":"<div><div>Solar photovoltaic (PV) power generation has experienced significant growth and thermal infrared (IR) imaging via unmanned aerial vehicles (UAVs) has become an efficient method for inspecting large-scale PV plants. However, variations in UAV flight paths and weather conditions cause orientation changes, luminance variations, and increased noise, challenging the robustness of fault classification models. This study introduces <em>p4(m)</em> depthwise separable group equivariant convolution module to address these challenges. The proposed models offer advantages in terms of model size, parameter count, fault classification performance, and robustness for solar PV panel images. Without data augmentation, the proposed model achieves 84.0% accuracy for the 12-Class task and 75.0% for the 11-Class task on the Infrared Solar Module dataset. Compared to data augmentation-based methods, the proposed model shows 1.7% higher accuracy in the 12-Class task and 4.2% in the 11-Class task. Additionally, the proposed model achieves a 7.3% improvement over non-augmented ensemble models in the 12-Class task, while maintaining model size and parameters below 20% of baseline models. Robustness evaluation reveals significant accuracy improvements under real-world image transformations: 9.25% for rotational changes, 8.66% for luminance variations, and 28.37% for noise interference. These results demonstrate the model’s effectiveness in handling challenging conditions while maintaining computational efficiency.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"127 ","pages":"Pages 486-499"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825005599","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solar photovoltaic (PV) power generation has experienced significant growth and thermal infrared (IR) imaging via unmanned aerial vehicles (UAVs) has become an efficient method for inspecting large-scale PV plants. However, variations in UAV flight paths and weather conditions cause orientation changes, luminance variations, and increased noise, challenging the robustness of fault classification models. This study introduces p4(m) depthwise separable group equivariant convolution module to address these challenges. The proposed models offer advantages in terms of model size, parameter count, fault classification performance, and robustness for solar PV panel images. Without data augmentation, the proposed model achieves 84.0% accuracy for the 12-Class task and 75.0% for the 11-Class task on the Infrared Solar Module dataset. Compared to data augmentation-based methods, the proposed model shows 1.7% higher accuracy in the 12-Class task and 4.2% in the 11-Class task. Additionally, the proposed model achieves a 7.3% improvement over non-augmented ensemble models in the 12-Class task, while maintaining model size and parameters below 20% of baseline models. Robustness evaluation reveals significant accuracy improvements under real-world image transformations: 9.25% for rotational changes, 8.66% for luminance variations, and 28.37% for noise interference. These results demonstrate the model’s effectiveness in handling challenging conditions while maintaining computational efficiency.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering