Hopf–Galois structures on parallel extensions

IF 0.8 2区 数学 Q2 MATHEMATICS
Andrew Darlington
{"title":"Hopf–Galois structures on parallel extensions","authors":"Andrew Darlington","doi":"10.1016/j.jalgebra.2025.04.025","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> be a finite separable extension of fields of degree <em>n</em>, and let <span><math><mi>E</mi><mo>/</mo><mi>K</mi></math></span> be its Galois closure. Greither and Pareigis showed how to find all Hopf–Galois structures on <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span>. We will call a subextension <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><mi>K</mi></math></span> of <span><math><mi>E</mi><mo>/</mo><mi>K</mi></math></span> <em>parallel</em> to <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> if <span><math><mo>[</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mi>K</mi><mo>]</mo><mo>=</mo><mi>n</mi></math></span>.</div><div>In this paper, we investigate the relationship between the Hopf–Galois structures on an extension <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> and those on the related parallel extensions. We give an example of a transitive subgroup corresponding to an extension admitting a Hopf–Galois structure but that has a parallel extension admitting no Hopf–Galois structures. We show that once one has such a situation, it can be extended into an infinite family of transitive subgroups admitting this phenomenon. We also investigate this fully in the case of extensions of degree <em>pq</em> with <span><math><mi>p</mi><mo>,</mo><mi>q</mi></math></span> distinct odd primes, and show that there is no example of such an extension admitting the phenomenon.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"679 ","pages":"Pages 1-27"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002480","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let L/K be a finite separable extension of fields of degree n, and let E/K be its Galois closure. Greither and Pareigis showed how to find all Hopf–Galois structures on L/K. We will call a subextension L/K of E/K parallel to L/K if [L:K]=n.
In this paper, we investigate the relationship between the Hopf–Galois structures on an extension L/K and those on the related parallel extensions. We give an example of a transitive subgroup corresponding to an extension admitting a Hopf–Galois structure but that has a parallel extension admitting no Hopf–Galois structures. We show that once one has such a situation, it can be extended into an infinite family of transitive subgroups admitting this phenomenon. We also investigate this fully in the case of extensions of degree pq with p,q distinct odd primes, and show that there is no example of such an extension admitting the phenomenon.
并行扩展上的Hopf-Galois结构
设L/K为n次域的有限可分扩展,设E/K为其伽罗瓦闭包。Greither和Pareigis展示了如何找到L/K上的所有Hopf-Galois结构。如果[L ':K]=n,我们称E/K平行于L/K的子扩展L ' /K。本文研究了L/K扩展上的Hopf-Galois结构与相关并行扩展上的Hopf-Galois结构之间的关系。我们给出了一个可传递子群对应于一个允许Hopf-Galois结构的扩展,但它有一个不允许Hopf-Galois结构的并行扩展的例子。我们证明,一旦存在这种情况,它就可以被推广到一个承认这种现象的无限传递子群族。在p,q不同奇数素数的pq次扩展的情况下,我们也充分地研究了这一点,并表明没有这样的扩展允许这种现象的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信