Yange Sun , Zhihao Li , Huaping Guo , Yan Feng , Yongqiang Tang , Wensheng Zhang , Jingqiu Gu
{"title":"TDDet: A novel lightweight and efficient tea disease detector","authors":"Yange Sun , Zhihao Li , Huaping Guo , Yan Feng , Yongqiang Tang , Wensheng Zhang , Jingqiu Gu","doi":"10.1016/j.compag.2025.110481","DOIUrl":null,"url":null,"abstract":"<div><div>Tea diseases cause significant economic losses to the tea industry every year, and thus developing a rapid and accurate tea disease detector is of great significance for assisting farmers in preventing diseases and increasing their income. Therefore, this paper proposes a lightweight and efficient detector called TDDet to quickly and accurately detect tea diseases. TDDet is mainly composed of two key innovations: feature extraction and feature aggregation. For feature extraction, we use lightweight depthwise separable convolution to reduce the computational load and enhance the ability to extract key local features in images of tea diseases. In addition, attention mechanisms including channel-, spatial-, and self-attentions, are employed to enable the model to focus on the most important parts of tea diseases, thereby improving the performance of the model. For feature aggregation, we propose a novel Cross-scale Feature Fusion (CFF) module to focus on tea disease areas, boosting the model’s sensitivity to feature details. Based on CFF, TDDet repeatedly fuses multiscale features of different levels in a top-down and bottom-up manner, enhancing feature representation capability. Besides, a lightweight and efficient upsampling module, called Dysample, is used to reduce computational costs and improve model performance by dynamically adjusting the sampling rate of feature maps. Experimental results demonstrate that TDDet with fewer parameters outperforms other state-of-the-art object detection models, enabling fast and accurate identification of tea diseases. Our code and dataset are available at <span><span>https://github.com/hpguo1982/TDDet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"237 ","pages":"Article 110481"},"PeriodicalIF":8.9000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925005873","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tea diseases cause significant economic losses to the tea industry every year, and thus developing a rapid and accurate tea disease detector is of great significance for assisting farmers in preventing diseases and increasing their income. Therefore, this paper proposes a lightweight and efficient detector called TDDet to quickly and accurately detect tea diseases. TDDet is mainly composed of two key innovations: feature extraction and feature aggregation. For feature extraction, we use lightweight depthwise separable convolution to reduce the computational load and enhance the ability to extract key local features in images of tea diseases. In addition, attention mechanisms including channel-, spatial-, and self-attentions, are employed to enable the model to focus on the most important parts of tea diseases, thereby improving the performance of the model. For feature aggregation, we propose a novel Cross-scale Feature Fusion (CFF) module to focus on tea disease areas, boosting the model’s sensitivity to feature details. Based on CFF, TDDet repeatedly fuses multiscale features of different levels in a top-down and bottom-up manner, enhancing feature representation capability. Besides, a lightweight and efficient upsampling module, called Dysample, is used to reduce computational costs and improve model performance by dynamically adjusting the sampling rate of feature maps. Experimental results demonstrate that TDDet with fewer parameters outperforms other state-of-the-art object detection models, enabling fast and accurate identification of tea diseases. Our code and dataset are available at https://github.com/hpguo1982/TDDet.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.