Correlation of collagen damage and failure mechanics in porcine pia-arachnoid complex

IF 2.4 3区 医学 Q3 BIOPHYSICS
Emma Luke , Brittany Coats
{"title":"Correlation of collagen damage and failure mechanics in porcine pia-arachnoid complex","authors":"Emma Luke ,&nbsp;Brittany Coats","doi":"10.1016/j.jbiomech.2025.112745","DOIUrl":null,"url":null,"abstract":"<div><div>Mild traumatic brain injury (mTBI) accounts for approximately 75% of all TBI cases, and the mechanisms are still poorly understood, in part due to limitations of current diagnostic tools. Yet, there is a critical need to detect the presence of mTBI to mitigate risk of further injury. In this study, we explore the potential of collagen hybridizing peptides (CHPs), which selectively bind to damaged collagen, to detect damage in the pia-arachnoid complex (PAC), a major load-transferring interface during head trauma. To generate damage, porcine PAC samples underwent peel tests. Peak force to failure and CHP fluorescence were measured in three regions of the brain at multiple post-mortem times. The peak force of PAC failure was region-specific, with increasing failure forces moving anterior to posterior (frontal: 20.91 ± 38.77 mN; parietal: 64.72 ± 33.31 mN; occipital: 86.68 ± 43.46 mN) and significantly different between frontal and occipital regions (p = 0.034). CHP fluorescence was significantly different between control and peeled PAC samples in mean pixel intensity (MPI; p = 0.031), median pixel intensity (MedPI; p = 0.009), and percent pixels above a defined threshold (PP; p = 0.014). Each of these CHP fluorescence metrics were significantly and positively correlated with peak force at failure (MPI: p = 0.049; MedPI: p = 0.026; PP: p = 0.002). These data suggest CHP is a viable solution to detecting the presence and severity of damage at the brain-skull interface, and may be a useful tool for quantifying damage in vivo.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"187 ","pages":"Article 112745"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002192902500257X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mild traumatic brain injury (mTBI) accounts for approximately 75% of all TBI cases, and the mechanisms are still poorly understood, in part due to limitations of current diagnostic tools. Yet, there is a critical need to detect the presence of mTBI to mitigate risk of further injury. In this study, we explore the potential of collagen hybridizing peptides (CHPs), which selectively bind to damaged collagen, to detect damage in the pia-arachnoid complex (PAC), a major load-transferring interface during head trauma. To generate damage, porcine PAC samples underwent peel tests. Peak force to failure and CHP fluorescence were measured in three regions of the brain at multiple post-mortem times. The peak force of PAC failure was region-specific, with increasing failure forces moving anterior to posterior (frontal: 20.91 ± 38.77 mN; parietal: 64.72 ± 33.31 mN; occipital: 86.68 ± 43.46 mN) and significantly different between frontal and occipital regions (p = 0.034). CHP fluorescence was significantly different between control and peeled PAC samples in mean pixel intensity (MPI; p = 0.031), median pixel intensity (MedPI; p = 0.009), and percent pixels above a defined threshold (PP; p = 0.014). Each of these CHP fluorescence metrics were significantly and positively correlated with peak force at failure (MPI: p = 0.049; MedPI: p = 0.026; PP: p = 0.002). These data suggest CHP is a viable solution to detecting the presence and severity of damage at the brain-skull interface, and may be a useful tool for quantifying damage in vivo.
猪蛛网膜复合体胶原损伤与破坏机制的相关性
轻度创伤性脑损伤(mTBI)约占所有TBI病例的75%,其机制仍然知之甚少,部分原因是由于当前诊断工具的局限性。然而,迫切需要检测mTBI的存在,以减轻进一步损伤的风险。在这项研究中,我们探索了胶原杂交肽(CHPs)的潜力,它可以选择性地结合到受损的胶原蛋白上,以检测头部创伤中主要的负荷传递界面——腹网膜-蛛网膜复合体(PAC)的损伤。为了产生损伤,猪PAC样品进行了剥离试验。在多个死后时间测量脑的三个区域的峰值失效力和CHP荧光。PAC破坏的峰值力具有区域特异性,破坏力由前向后逐渐增加(额部:20.91±38.77 mN;顶骨:64.72±33.31 mN;枕区:86.68±43.46 mN),额、枕区差异有统计学意义(p = 0.034)。对照和去皮PAC样品CHP荧光的平均像元强度(MPI;p = 0.031),中位像素强度(MedPI;p = 0.009),以及超过定义阈值的像素百分比(PP;p = 0.014)。这些CHP荧光指标均与失效时的峰值力呈显著正相关(MPI: p = 0.049;MedPI: p = 0.026;PP: p = 0.002)。这些数据表明,CHP是检测脑-颅骨界面损伤的存在和严重程度的可行解决方案,可能是量化体内损伤的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信