Jacopo Giordano , Angelo Cenedese , Andrea Serrani
{"title":"A natural indirect adaptive controller for a satellite-mounted manipulator","authors":"Jacopo Giordano , Angelo Cenedese , Andrea Serrani","doi":"10.1016/j.conengprac.2025.106395","DOIUrl":null,"url":null,"abstract":"<div><div>The work considers the design of an indirect adaptive controller for a satellite equipped with a robotic arm manipulating an object. Model uncertainty on the manipulated object can considerably impact the overall behavior of the system. In addition, the dynamics of the actuators of the base satellite are non-linear and can be affected by malfunctioning. Neglecting these two phenomena may lead to excessive control effort or to performance degradation. To deal with these issues, an indirect adaptive control approach is pursued in this paper, which allows consideration of relevant features of the actuators’ dynamics, such as loss of effectiveness. Furthermore, an adaptive law that preserves the physical consistency of the inertial parameters of the various rigid bodies comprising the system is employed. The performance and robustness of the controller are first analyzed and then validated in a realistic simulation study.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"163 ","pages":"Article 106395"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125001583","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The work considers the design of an indirect adaptive controller for a satellite equipped with a robotic arm manipulating an object. Model uncertainty on the manipulated object can considerably impact the overall behavior of the system. In addition, the dynamics of the actuators of the base satellite are non-linear and can be affected by malfunctioning. Neglecting these two phenomena may lead to excessive control effort or to performance degradation. To deal with these issues, an indirect adaptive control approach is pursued in this paper, which allows consideration of relevant features of the actuators’ dynamics, such as loss of effectiveness. Furthermore, an adaptive law that preserves the physical consistency of the inertial parameters of the various rigid bodies comprising the system is employed. The performance and robustness of the controller are first analyzed and then validated in a realistic simulation study.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.