Large airfoil models

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Howon Lee, Aanchal Save, Pranay Seshadri, Juergen Rauleder
{"title":"Large airfoil models","authors":"Howon Lee,&nbsp;Aanchal Save,&nbsp;Pranay Seshadri,&nbsp;Juergen Rauleder","doi":"10.1016/j.compfluid.2025.106662","DOIUrl":null,"url":null,"abstract":"<div><div>The development of a Large Airfoil Model (LAM), a transformative approach for answering technical questions on airfoil aerodynamics, requires a vast dataset and a model to leverage it. To build this foundation, a novel probabilistic machine learning approach, A Deep Airfoil Prediction Tool (ADAPT), has been developed. ADAPT makes uncertainty-aware predictions of airfoil pressure coefficient (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>) distributions by harnessing experimental data and incorporating measurement uncertainties. By employing deep kernel learning, performing Gaussian Process Regression in a ten-dimensional latent space learned by a neural network, ADAPT effectively handles unstructured experimental datasets. In tandem, Airfoil Surface Pressure Information Repository of Experiments (ASPIRE), the first large-scale, open-source repository of airfoil experimental data, has been developed. ASPIRE integrates century-old historical data with modern reports, forming an unparalleled resource of real-world pressure measurements. This addresses a critical gap left by prior repositories, which relied primarily on numerical simulations. Demonstrative results for three airfoils show that ADAPT accurately predicts <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> distributions and aerodynamic coefficients across varied flow conditions, achieving a mean absolute error in enclosed area (<span><math><msub><mrow><mtext>MAE</mtext></mrow><mrow><mtext>enclosed</mtext></mrow></msub></math></span>) of 0.029. ASPIRE and ADAPT lay the foundation for an interactive airfoil analysis tool driven by a large language model, enabling users to perform design tasks based on natural language questions rather than explicit technical input.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"298 ","pages":"Article 106662"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025001227","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of a Large Airfoil Model (LAM), a transformative approach for answering technical questions on airfoil aerodynamics, requires a vast dataset and a model to leverage it. To build this foundation, a novel probabilistic machine learning approach, A Deep Airfoil Prediction Tool (ADAPT), has been developed. ADAPT makes uncertainty-aware predictions of airfoil pressure coefficient (Cp) distributions by harnessing experimental data and incorporating measurement uncertainties. By employing deep kernel learning, performing Gaussian Process Regression in a ten-dimensional latent space learned by a neural network, ADAPT effectively handles unstructured experimental datasets. In tandem, Airfoil Surface Pressure Information Repository of Experiments (ASPIRE), the first large-scale, open-source repository of airfoil experimental data, has been developed. ASPIRE integrates century-old historical data with modern reports, forming an unparalleled resource of real-world pressure measurements. This addresses a critical gap left by prior repositories, which relied primarily on numerical simulations. Demonstrative results for three airfoils show that ADAPT accurately predicts Cp distributions and aerodynamic coefficients across varied flow conditions, achieving a mean absolute error in enclosed area (MAEenclosed) of 0.029. ASPIRE and ADAPT lay the foundation for an interactive airfoil analysis tool driven by a large language model, enabling users to perform design tasks based on natural language questions rather than explicit technical input.
大型翼型模型
一个大型翼型模型(LAM)的发展,一个变革性的方法来回答翼型空气动力学技术问题,需要一个庞大的数据集和模型来利用它。为了建立这个基础,一种新的概率机器学习方法,深度翼型预测工具(ADAPT)已经开发出来。ADAPT使翼型压力系数(Cp)分布的不确定性意识的预测利用实验数据,并纳入测量的不确定性。ADAPT采用深度核学习,在神经网络学习的十维潜在空间中执行高斯过程回归,有效地处理非结构化实验数据集。在串联,翼型表面压力信息库的实验(ASPIRE),第一个大规模的,开源的翼型实验数据库,已开发。ASPIRE将百年历史数据与现代报告相结合,形成了无与伦比的真实世界压力测量资源。这解决了以前主要依赖于数值模拟的存储库留下的一个关键差距。三种翼型的验证结果表明,ADAPT能够准确预测不同流动条件下的Cp分布和气动系数,封闭区域的平均绝对误差为0.029。ASPIRE和ADAPT为大型语言模型驱动的交互式翼型分析工具奠定了基础,使用户能够根据自然语言问题执行设计任务,而不是明确的技术输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信