Yao Lu , Ming Huang , Jim S. Shiau , Fengwen Lai , Liqian Peng
{"title":"Effects of flocculants on in–situ recycling potential of waste EPB shield muck with residual foams","authors":"Yao Lu , Ming Huang , Jim S. Shiau , Fengwen Lai , Liqian Peng","doi":"10.1016/j.sandf.2025.101625","DOIUrl":null,"url":null,"abstract":"<div><div>The in–situ recycling technique offers a promising solution for the efficient management of the escalating volumes of waste muck or slurry generated during shield tunneling. While foam is extensively utilized for soil conditioning in earth pressure balance (EPB) tunneling, the effects of organic and inorganic flocculants on the in–situ recycling potential of waste EPB shield muck containing residual foams remain underexplored. To bridge this gap, laboratory experiments were conducted using four flocculants: cationic polyacrylamide (CPAM), nonionic polyacrylamide (NPAM), anionic polyacrylamide (APAM), and polyaluminum chloride (PACL), with an enhanced flocculation and press–filtration apparatus. The defoaming–flocculation–dewatering behavior of waste EPB shield muck was systematically investigated by evaluating key parameters, including residual foam height, defoaming ratio, antifoaming ratio, total suspended solids, turbidity, moisture content, and zeta potential, while accounting for both muck dry mass and fines content. Moreover, the microscopic structure of flocculates and filter cakes was characterized using nanoparticle size analysis and scanning electron microscopy. The experimental results reveal that CPAM exhibits constrained flocculation and dewatering efficiency, primarily attributed to diminished charge neutralization resulting from residual anionic surfactants. In contrast, PACL demonstrates superior dewatering performance compared to NPAM and APAM, but exhibits the lowest flocculation and foam–suppression efficiency. Additionally, a consistent linear negative correlation is identified between the flocculation and dewatering indices of EPB shield muck, independent of the flocculant type, whether organic or inorganic.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 3","pages":"Article 101625"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080625000599","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The in–situ recycling technique offers a promising solution for the efficient management of the escalating volumes of waste muck or slurry generated during shield tunneling. While foam is extensively utilized for soil conditioning in earth pressure balance (EPB) tunneling, the effects of organic and inorganic flocculants on the in–situ recycling potential of waste EPB shield muck containing residual foams remain underexplored. To bridge this gap, laboratory experiments were conducted using four flocculants: cationic polyacrylamide (CPAM), nonionic polyacrylamide (NPAM), anionic polyacrylamide (APAM), and polyaluminum chloride (PACL), with an enhanced flocculation and press–filtration apparatus. The defoaming–flocculation–dewatering behavior of waste EPB shield muck was systematically investigated by evaluating key parameters, including residual foam height, defoaming ratio, antifoaming ratio, total suspended solids, turbidity, moisture content, and zeta potential, while accounting for both muck dry mass and fines content. Moreover, the microscopic structure of flocculates and filter cakes was characterized using nanoparticle size analysis and scanning electron microscopy. The experimental results reveal that CPAM exhibits constrained flocculation and dewatering efficiency, primarily attributed to diminished charge neutralization resulting from residual anionic surfactants. In contrast, PACL demonstrates superior dewatering performance compared to NPAM and APAM, but exhibits the lowest flocculation and foam–suppression efficiency. Additionally, a consistent linear negative correlation is identified between the flocculation and dewatering indices of EPB shield muck, independent of the flocculant type, whether organic or inorganic.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.