A hybrid deep learning framework for early detection of Mpox using image data

Sajal Chakroborty
{"title":"A hybrid deep learning framework for early detection of Mpox using image data","authors":"Sajal Chakroborty","doi":"10.1016/j.health.2025.100396","DOIUrl":null,"url":null,"abstract":"<div><div>Infectious diseases pose significant global threats to public health and economic stability by causing pandemics. Early detection of infectious diseases is crucial to prevent global outbreaks. Mpox, a contagious viral disease first detected in humans in 1970, has experienced multiple epidemics in recent decades, emphasizing the development of tools for its early detection. In this paper, we propose a hybrid deep learning framework for Mpox detection. This framework allows us to construct hybrid deep learning models combining deep learning architectures as a feature extraction tool with machine learning classifiers and perform a comprehensive analysis of Mpox detection from image data. Our best-performing model consists of MobileNetV2 with LightGBM classifier, which achieves an accuracy of 91.49%, precision of 86.96%, weighted precision of 91.87%, recall of 95.24%, weighted recall of 91.49%, F1 score of 90.91%, weighted F1-score of 91.51% and Matthews Correlation Coefficient score of 0.83.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"7 ","pages":"Article 100396"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Infectious diseases pose significant global threats to public health and economic stability by causing pandemics. Early detection of infectious diseases is crucial to prevent global outbreaks. Mpox, a contagious viral disease first detected in humans in 1970, has experienced multiple epidemics in recent decades, emphasizing the development of tools for its early detection. In this paper, we propose a hybrid deep learning framework for Mpox detection. This framework allows us to construct hybrid deep learning models combining deep learning architectures as a feature extraction tool with machine learning classifiers and perform a comprehensive analysis of Mpox detection from image data. Our best-performing model consists of MobileNetV2 with LightGBM classifier, which achieves an accuracy of 91.49%, precision of 86.96%, weighted precision of 91.87%, recall of 95.24%, weighted recall of 91.49%, F1 score of 90.91%, weighted F1-score of 91.51% and Matthews Correlation Coefficient score of 0.83.
基于图像数据的Mpox早期检测混合深度学习框架
传染病通过引起大流行,对公共卫生和经济稳定构成重大的全球威胁。早期发现传染病对预防全球疫情至关重要。m痘是1970年首次在人类中发现的一种传染性病毒疾病,近几十年来经历了多次流行,强调了早期发现工具的开发。在本文中,我们提出了一种用于Mpox检测的混合深度学习框架。该框架允许我们构建混合深度学习模型,将深度学习架构作为特征提取工具与机器学习分类器相结合,并从图像数据中执行Mpox检测的综合分析。我们表现最好的模型由带有LightGBM分类器的MobileNetV2组成,其准确率为91.49%,精度为86.96%,加权精度为91.87%,召回率为95.24%,加权召回率为91.49%,F1得分为90.91%,加权F1得分为91.51%,马修斯相关系数得分为0.83。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信