{"title":"A hybrid deep learning framework for early detection of Mpox using image data","authors":"Sajal Chakroborty","doi":"10.1016/j.health.2025.100396","DOIUrl":null,"url":null,"abstract":"<div><div>Infectious diseases pose significant global threats to public health and economic stability by causing pandemics. Early detection of infectious diseases is crucial to prevent global outbreaks. Mpox, a contagious viral disease first detected in humans in 1970, has experienced multiple epidemics in recent decades, emphasizing the development of tools for its early detection. In this paper, we propose a hybrid deep learning framework for Mpox detection. This framework allows us to construct hybrid deep learning models combining deep learning architectures as a feature extraction tool with machine learning classifiers and perform a comprehensive analysis of Mpox detection from image data. Our best-performing model consists of MobileNetV2 with LightGBM classifier, which achieves an accuracy of 91.49%, precision of 86.96%, weighted precision of 91.87%, recall of 95.24%, weighted recall of 91.49%, F1 score of 90.91%, weighted F1-score of 91.51% and Matthews Correlation Coefficient score of 0.83.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"7 ","pages":"Article 100396"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Infectious diseases pose significant global threats to public health and economic stability by causing pandemics. Early detection of infectious diseases is crucial to prevent global outbreaks. Mpox, a contagious viral disease first detected in humans in 1970, has experienced multiple epidemics in recent decades, emphasizing the development of tools for its early detection. In this paper, we propose a hybrid deep learning framework for Mpox detection. This framework allows us to construct hybrid deep learning models combining deep learning architectures as a feature extraction tool with machine learning classifiers and perform a comprehensive analysis of Mpox detection from image data. Our best-performing model consists of MobileNetV2 with LightGBM classifier, which achieves an accuracy of 91.49%, precision of 86.96%, weighted precision of 91.87%, recall of 95.24%, weighted recall of 91.49%, F1 score of 90.91%, weighted F1-score of 91.51% and Matthews Correlation Coefficient score of 0.83.